We analyse three corpora of US English text found online. We find that the blogs and news corpora are similar, the twitter corpus is different. We propose that this is the result of the 140 character limit of Twitter messages.
In this report we look at three corpora of US English text, a set of internet blogs posts, a set of internet news articles, and a set of twitter messages.
We collect the following forms of information:
In the following section we will describe the data collection process, the section after that gives the results of the data exploration, we finally present conclusions and give references.
For our analysis we use the R computing environment (R Core Team 2014), as well as the libraries stringi (Gagolewski and Tartanus 2014) and ggplot2 (Wickham 2009). In order to make the code more readable we use the pipe operator from the magrittr library (Bache and Wickham 2014). This report is compiled using the rmarkdown library (Allaire et al. 2014) and (knitr?). Finally during writing we used the RStudio IDE (RStudio Team 2012).
The data is presented as a ZIP compressed archive, which is freely downloadable from here.
# specify the source and destination of the download
destination_file <- "Coursera-SwiftKey.zip"
source_file <- "http://d396qusza40orc.cloudfront.net/dsscapstone/dataset/Coursera-SwiftKey.zip"
# execute the download
download.file(source_file, destination_file)
# extract the files from the zip file
unzip(destination_file)
Inspect the unzipped files
# find out which files where unzipped
unzip(destination_file, list = TRUE )
## Name Length Date
## 1 final/ 0 2014-07-22 10:10:00
## 2 final/de_DE/ 0 2014-07-22 10:10:00
## 3 final/de_DE/de_DE.twitter.txt 75578341 2014-07-22 10:11:00
## 4 final/de_DE/de_DE.blogs.txt 85459666 2014-07-22 10:11:00
## 5 final/de_DE/de_DE.news.txt 95591959 2014-07-22 10:11:00
## 6 final/ru_RU/ 0 2014-07-22 10:10:00
## 7 final/ru_RU/ru_RU.blogs.txt 116855835 2014-07-22 10:12:00
## 8 final/ru_RU/ru_RU.news.txt 118996424 2014-07-22 10:12:00
## 9 final/ru_RU/ru_RU.twitter.txt 105182346 2014-07-22 10:12:00
## 10 final/en_US/ 0 2014-07-22 10:10:00
## 11 final/en_US/en_US.twitter.txt 167105338 2014-07-22 10:12:00
## 12 final/en_US/en_US.news.txt 205811889 2014-07-22 10:13:00
## 13 final/en_US/en_US.blogs.txt 210160014 2014-07-22 10:13:00
## 14 final/fi_FI/ 0 2014-07-22 10:10:00
## 15 final/fi_FI/fi_FI.news.txt 94234350 2014-07-22 10:11:00
## 16 final/fi_FI/fi_FI.blogs.txt 108503595 2014-07-22 10:12:00
## 17 final/fi_FI/fi_FI.twitter.txt 25331142 2014-07-22 10:10:00
# inspect the data
list.files("final")
## [1] "de_DE" "en_US" "fi_FI" "ru_RU"
list.files("final/en_US")
## [1] "en_US.blogs.txt" "en_US.news.txt" "en_US.twitter.txt"
The corpora are contained in three separate plain-text files, out of which one is binary, for more information on this see (Bruin 2011). We import these files as follows.
# import the blogs and twitter datasets in text mode
blogs <- readLines("final/en_US/en_US.blogs.txt", encoding="UTF-8")
twitter <- readLines("final/en_US/en_US.twitter.txt", encoding="UTF-8")
## Warning in readLines("final/en_US/en_US.twitter.txt", encoding = "UTF-8"): line
## 167155 appears to contain an embedded nul
## Warning in readLines("final/en_US/en_US.twitter.txt", encoding = "UTF-8"): line
## 268547 appears to contain an embedded nul
## Warning in readLines("final/en_US/en_US.twitter.txt", encoding = "UTF-8"): line
## 1274086 appears to contain an embedded nul
## Warning in readLines("final/en_US/en_US.twitter.txt", encoding = "UTF-8"): line
## 1759032 appears to contain an embedded nul
# import the news dataset in binary mode
con <- file("final/en_US/en_US.news.txt", open="rb")
news <- readLines(con, encoding="UTF-8")
close(con)
rm(con)
Full instructions for importing the data can be found in the CodeBook of the GitHub repository.
The before we analyse the files we look at their size (presented in MegaBytes / MBs).
# file size (in MegaBytes/MB)
file.info("final/en_US/en_US.blogs.txt")$size / 1024^2
## [1] 200.4242
file.info("final/en_US/en_US.news.txt")$size / 1024^2
## [1] 196.2775
file.info("final/en_US/en_US.twitter.txt")$size / 1024^2
## [1] 159.3641
For our analysis we need two libraries.
# library for character string analysis
library(stringi)
# library for plotting
library(ggplot2)
We analyse the lines and characters.
stri_stats_general( blogs )
## Lines LinesNEmpty Chars CharsNWhite
## 899288 899288 206824382 170389539
stri_stats_general( news )
## Lines LinesNEmpty Chars CharsNWhite
## 1010242 1010242 203223154 169860866
stri_stats_general( twitter )
## Lines LinesNEmpty Chars CharsNWhite
## 2360148 2360148 162096031 134082634
Next we count the words per item (line). We summarise the distibution of these counts per corpus, using summary statistics and a distibution plot. we start with the blogs corpus.
words_blogs <- stri_count_words(blogs)
summary( words_blogs )
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00 9.00 28.00 41.75 60.00 6726.00
qplot( words_blogs )
## Warning: `qplot()` was deprecated in ggplot2 3.4.0.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Next we analys the news corpus.
words_news <- stri_count_words(news)
summary( words_news )
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.00 19.00 32.00 34.41 46.00 1796.00
qplot( words_news )
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Finally we analyse the twitter corpus.
words_twitter <- stri_count_words(twitter)
summary( words_twitter )
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.00 7.00 12.00 12.75 18.00 47.00
qplot( words_twitter )
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
We analyse three corpora of US english text. The file sizes are around 200 MegaBytes (MBs) per file.
We find that the blogs and news corpora consist of about 1 million items each, and the *twitter** corpus consist of over 2 million items. Twitter messages have a character limit of 140 (with exceptions for links), this explains why there are some many more items for a corpus of about the same size.
This result is further supported by the fact that the number of characters is similar for all three corpora (around 200 million each).
Finally we find that the frequency distributions of the blogs and news corpora are similar (appearing to be log-normal). The frequency distribution of the twitter corpus is again different, as a result of the character limit.