Title: Economic Indicators Analysis Using Penn World Table
Objective: Analysis of global economic indicators, including trends in investment, consumption patterns, and population effects on GDP using Penn World Table.
Loading the dataset and selecting/filtering relevant data.
# Loading the dataset
pwt_data <- read_excel("/Users/91836/OneDrive/Desktop/pwt1001.xlsx", sheet = "Data")
# Selecting and Filtering Relevant Data
pwt_cleaned <- pwt_data %>%
select(country, year, rgdpna, ccon, cgdpo, pop) %>% # Select relevant columns
filter(year >= 2000) # Filter for years from 2000 onwards
# Adding a New Variable: GDP Per Capita
pwt_cleaned <- pwt_cleaned %>%
mutate(gdp_per_capita = rgdpna / pop) # Calculate GDP per capita
print(pwt_cleaned)
## # A tibble: 3,660 × 7
## country year rgdpna ccon cgdpo pop gdp_per_capita
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Aruba 2000 2837. 2439. 4520. 0.0909 31225.
## 2 Aruba 2001 2827. 2539. 4980. 0.0929 30427.
## 3 Aruba 2002 2765. 2605. 3925. 0.0950 29112.
## 4 Aruba 2003 2778. 2707. 4053. 0.0970 28637.
## 5 Aruba 2004 2987. 2775. 4531. 0.0987 30254.
## 6 Aruba 2005 3022. 2928. 4560. 0.100 30214.
## 7 Aruba 2006 3030. 2986. 4704. 0.101 30050.
## 8 Aruba 2007 3115. 3151. 4544. 0.101 30776.
## 9 Aruba 2008 3042. 3036. 4608. 0.101 30017.
## 10 Aruba 2009 2783. 2973. 4149. 0.101 27427.
## # ℹ 3,650 more rows
Top 10 Countries by Average GDP Per Capita
# 1. Top 10 Countries by Average GDP Per Capita
per_capita_summary <- pwt_cleaned %>%
group_by(country) %>%
summarise(avg_gdp_per_capita = mean(gdp_per_capita, na.rm = TRUE)) %>%
arrange(desc(avg_gdp_per_capita)) %>%
head(10)
print("Top 10 Countries by Average GDP Per Capita:")
## [1] "Top 10 Countries by Average GDP Per Capita:"
print(per_capita_summary)
## # A tibble: 10 × 2
## country avg_gdp_per_capita
## <chr> <dbl>
## 1 Qatar 113068.
## 2 Luxembourg 86051.
## 3 China, Macao SAR 77203.
## 4 United Arab Emirates 73968.
## 5 Brunei Darussalam 70953.
## 6 Cayman Islands 70706.
## 7 Switzerland 69477.
## 8 Norway 67253.
## 9 Kuwait 67080.
## 10 Ireland 66875.
Yearly Consumption Trends for India
# 2. Yearly Consumption Trends for a Specific Country (e.g., India)
india_consumption <- pwt_cleaned %>%
filter(country == "India") %>%
select(year, ccon) %>%
arrange(year)
print("India Consumption Trends Over Time:")
## [1] "India Consumption Trends Over Time:"
print(india_consumption)
## # A tibble: 20 × 2
## year ccon
## <dbl> <dbl>
## 1 2000 1868746.
## 2 2001 1978239.
## 3 2002 2031531.
## 4 2003 2156893.
## 5 2004 2278048.
## 6 2005 2513153.
## 7 2006 2683536.
## 8 2007 2964960.
## 9 2008 3228938.
## 10 2009 3515352.
## 11 2010 3865497
## 12 2011 4291448
## 13 2012 4623438
## 14 2013 4747488.
## 15 2014 4937785
## 16 2015 5254314
## 17 2016 5581687
## 18 2017 5886206.
## 19 2018 6325873
## 20 2019 6608024.
Average GDP Per Capita of Top 10 Countries
Consumption Trends Over Time for India