The analysis of various factors influencing economic growth and development. Specifically, we focus on understanding the relationship between GDP growth and the Human Capital Index (HCI) over a span of years (1990-2020) for different countries. By selecting and analyzing relevant data, we aim to provide insights into how these two factors—economic growth and human capital—interact at a global level and how they vary across countries.

##Objective he main objectives of this analysis are to analyze the average GDP growth over the years for different countries, focusing on the factors influencing economic growth across regions and how these factors have evolved. And investigate the Human Capital Index (HCI), which measures a country’s investment in education, skills, and health, and determine how these investments impact long-term growth and development.

##Data Selection For this analysis, the Penn World Table (PWT) version 10.0 dataset is used, which provides extensive global data on economic and human development indicators.

library(dplyr)
## Warning: package 'dplyr' was built under R version 4.4.2
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.4.2
library(leaflet)
## Warning: package 'leaflet' was built under R version 4.4.2
library(knitr)
## Warning: package 'knitr' was built under R version 4.4.2
knitr::opts_chunk$set(echo = TRUE)
library(readxl)
## Warning: package 'readxl' was built under R version 4.4.2
pwt <- read_excel("C:/Users/Rishita Chintala/Downloads/pwt100 (1).xlsx", 
                        sheet = "Data")

###Filter Data (1990-2020)

data <- pwt %>%
  select(country, year, rgdpna, hc, pop) %>%
  filter(year >= 1990 & year <= 2020) %>%
  mutate(gdp_per_capita = rgdpna / pop,
         gdp_growth = (gdp_per_capita - lag(gdp_per_capita)) / lag(gdp_per_capita) * 100)

# Inspect the data
head(data)
## # A tibble: 6 × 7
##   country  year rgdpna    hc    pop gdp_per_capita gdp_growth
##   <chr>   <dbl>  <dbl> <dbl>  <dbl>          <dbl>      <dbl>
## 1 Aruba    1990  1694.    NA 0.0621         27255.     NA    
## 2 Aruba    1991  1829.    NA 0.0646         28299.      3.83 
## 3 Aruba    1992  1936.    NA 0.0682         28377.      0.276
## 4 Aruba    1993  2078.    NA 0.0725         28658.      0.989
## 5 Aruba    1994  2248.    NA 0.0767         29313.      2.28 
## 6 Aruba    1995  2305.    NA 0.0803         28692.     -2.12
data <- data %>%
  filter(!is.na(gdp_growth) & gdp_growth != 0)

data
## # A tibble: 5,457 × 7
##    country  year rgdpna    hc    pop gdp_per_capita gdp_growth
##    <chr>   <dbl>  <dbl> <dbl>  <dbl>          <dbl>      <dbl>
##  1 Aruba    1991  1829.    NA 0.0646         28299.      3.83 
##  2 Aruba    1992  1936.    NA 0.0682         28377.      0.276
##  3 Aruba    1993  2078.    NA 0.0725         28658.      0.989
##  4 Aruba    1994  2248.    NA 0.0767         29313.      2.28 
##  5 Aruba    1995  2305.    NA 0.0803         28692.     -2.12 
##  6 Aruba    1996  2333.    NA 0.0832         28045.     -2.25 
##  7 Aruba    1997  2516.    NA 0.0855         29440.      4.97 
##  8 Aruba    1998  2683.    NA 0.0873         30746.      4.43 
##  9 Aruba    1999  2714.    NA 0.0890         30497.     -0.809
## 10 Aruba    2000  2837.    NA 0.0909         31225.      2.39 
## # ℹ 5,447 more rows

##Table Output ###Top 5 countries by Average GDP Growth

# Summarize to find average growth per country
country_avg_growth <- data %>%
  group_by(country) %>%
  summarize(
    avg_gdp_growth = mean(gdp_growth, na.rm = TRUE)
  ) %>%
  arrange(desc(avg_gdp_growth)) # Sort by highest growth

# Select the top 5 countries
top_5_countries <- head(country_avg_growth, 5)

# Display the result
top_5_countries
## # A tibble: 5 × 2
##   country                avg_gdp_growth
##   <chr>                           <dbl>
## 1 British Virgin Islands          164. 
## 2 Belgium                         130. 
## 3 Canada                          121. 
## 4 Saudi Arabia                     57.8
## 5 Finland                          43.4

##Data Visualization ### Average GDP Growth

# Filter data for the top 5 countries
ggplot(top_5_countries, aes(x = reorder(country, -avg_gdp_growth), y = avg_gdp_growth, fill = country)) +
  geom_bar(stat = "identity") +
  labs(
    title = "Top 5 Countries by Average GDP Growth (1990-2020)",
    x = "Country",
    y = "Average GDP Growth (%)"
  ) +
  theme_minimal() +
  theme(legend.position = "none") +
  coord_flip() # Optional: Flip for horizontal bars

##Table Output ###Top 5 countries by Human Capital Index

country_hci <- pwt %>%
  select(country, year, hc) %>%
  group_by(country) %>%
  summarize(
    avg_hci = mean(hc, na.rm = TRUE)
  ) %>%
  arrange(desc(avg_hci))

# Select the top 5 countries
top_5_hci <- head(country_hci, 5)
top_5_hci
## # A tibble: 5 × 2
##   country        avg_hci
##   <chr>            <dbl>
## 1 Czech Republic    3.53
## 2 Slovakia          3.45
## 3 Switzerland       3.34
## 4 Slovenia          3.32
## 5 Estonia           3.32

##Data Visualization ###Human Capital Index

ggplot(top_5_hci, aes(x = reorder(country, -avg_hci), y = avg_hci, fill = country)) +
  geom_bar(stat = "identity") +
  labs(
    title = "Top 5 Countries by Average Human Capital Index (HCI)",
    x = "Country",
    y = "Average HCI",
    fill = "Country"
  ) +
  theme_minimal() +
  theme(legend.position = "none")

##Findings and Conclusion

  1. GDP Growth Trends Countries like Belgium, Canada, and Finland exhibited stable but moderate growth rates, reflecting their maturity as advanced economies. The success of countries like Canada and Finland underlines the importance of diversification and innovation-driven growth.esource-dependent economies like Saudi Arabia and financial hubs like the British Virgin Islands must address volatility risks through structural reforms.Developed nations like Belgium showcase how integration into global trade networks and policy stability drive consistent growth.

  2. Human Capital Index These countries demonstrate that higher HCI strongly correlates with innovation, economic resilience, and higher income levels.Strategic policies focusing on education quality, healthcare accessibility, and skills development play a crucial role in achieving high HCI.Countries like Estonia showcase how integrating technology into education systems can provide a competitive edge in the modern economy.