carD = read.csv("C:/Users/User/Downloads/MAHE FILES/MAHE SEMESTER 1/R and Python/MAHE R WK3&4/mtcars3.csv")
head(carD,5)
##                   X  mpg cyl disp  hp drat    wt  qsec vs am gear carb
## 1         Mazda RX4 21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
## 2     Mazda RX4 Wag 21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
## 3        Datsun 710 22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
## 4    Hornet 4 Drive 21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
## 5 Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
#To check for the data structure
str(carD)
## 'data.frame':    32 obs. of  12 variables:
##  $ X   : chr  "Mazda RX4" "Mazda RX4 Wag" "Datsun 710" "Hornet 4 Drive" ...
##  $ mpg : num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
##  $ cyl : int  6 6 4 6 8 6 8 4 4 6 ...
##  $ disp: num  160 160 108 258 360 ...
##  $ hp  : int  110 110 93 110 175 105 245 62 95 123 ...
##  $ drat: num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
##  $ wt  : num  2.62 2.88 2.32 3.21 3.44 ...
##  $ qsec: num  16.5 17 18.6 19.4 17 ...
##  $ vs  : int  0 0 1 1 0 1 0 1 1 1 ...
##  $ am  : int  1 1 1 0 0 0 0 0 0 0 ...
##  $ gear: int  4 4 4 3 3 3 3 4 4 4 ...
##  $ carb: int  4 4 1 1 2 1 4 2 2 4 ...
nrow(carD)
## [1] 32
ncol(carD)
## [1] 12
dim(carD)
## [1] 32 12
colnames(carD)
##  [1] "X"    "mpg"  "cyl"  "disp" "hp"   "drat" "wt"   "qsec" "vs"   "am"  
## [11] "gear" "carb"
#To convert into columns
categorical_cols = c("vs", "am")
carD[categorical_cols] = lapply(carD[categorical_cols], as.factor)
str(carD)
## 'data.frame':    32 obs. of  12 variables:
##  $ X   : chr  "Mazda RX4" "Mazda RX4 Wag" "Datsun 710" "Hornet 4 Drive" ...
##  $ mpg : num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
##  $ cyl : int  6 6 4 6 8 6 8 4 4 6 ...
##  $ disp: num  160 160 108 258 360 ...
##  $ hp  : int  110 110 93 110 175 105 245 62 95 123 ...
##  $ drat: num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
##  $ wt  : num  2.62 2.88 2.32 3.21 3.44 ...
##  $ qsec: num  16.5 17 18.6 19.4 17 ...
##  $ vs  : Factor w/ 2 levels "0","1": 1 1 2 2 1 2 1 2 2 2 ...
##  $ am  : Factor w/ 2 levels "0","1": 2 2 2 1 1 1 1 1 1 1 ...
##  $ gear: int  4 4 4 3 3 3 3 4 4 4 ...
##  $ carb: int  4 4 1 1 2 1 4 2 2 4 ...
#Selecting data
#THe SELECT() is used to select a particular column
library("tidyverse")
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.2     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.2     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.1     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
select(carD, wt)
##       wt
## 1  2.620
## 2  2.875
## 3  2.320
## 4  3.215
## 5  3.440
## 6  3.460
## 7  3.570
## 8  3.190
## 9  3.150
## 10 3.440
## 11 3.440
## 12 4.070
## 13 3.730
## 14 3.780
## 15 5.250
## 16 5.424
## 17 5.345
## 18 2.200
## 19 1.615
## 20 1.835
## 21 2.465
## 22 3.520
## 23 3.435
## 24 3.840
## 25 3.845
## 26 1.935
## 27 2.140
## 28 1.513
## 29 3.170
## 30 2.770
## 31 3.570
## 32 2.780
#To select with a column excluded
select(carD, -wt)
##                      X  mpg cyl  disp  hp drat  qsec vs am gear carb
## 1            Mazda RX4 21.0   6 160.0 110 3.90 16.46  0  1    4    4
## 2        Mazda RX4 Wag 21.0   6 160.0 110 3.90 17.02  0  1    4    4
## 3           Datsun 710 22.8   4 108.0  93 3.85 18.61  1  1    4    1
## 4       Hornet 4 Drive 21.4   6 258.0 110 3.08 19.44  1  0    3    1
## 5    Hornet Sportabout 18.7   8 360.0 175 3.15 17.02  0  0    3    2
## 6              Valiant 18.1   6 225.0 105 2.76 20.22  1  0    3    1
## 7           Duster 360 14.3   8 360.0 245 3.21 15.84  0  0    3    4
## 8            Merc 240D 24.4   4 146.7  62 3.69 20.00  1  0    4    2
## 9             Merc 230 22.8   4 140.8  95 3.92 22.90  1  0    4    2
## 10            Merc 280 19.2   6 167.6 123 3.92 18.30  1  0    4    4
## 11           Merc 280C 17.8   6 167.6 123 3.92 18.90  1  0    4    4
## 12          Merc 450SE 16.4   8 275.8 180 3.07 17.40  0  0    3    3
## 13          Merc 450SL 17.3   8 275.8 180 3.07 17.60  0  0    3    3
## 14         Merc 450SLC 15.2   8 275.8 180 3.07 18.00  0  0    3    3
## 15  Cadillac Fleetwood 10.4   8 472.0 205 2.93 17.98  0  0    3    4
## 16 Lincoln Continental 10.4   8 460.0 215 3.00 17.82  0  0    3    4
## 17   Chrysler Imperial 14.7   8 440.0 230 3.23 17.42  0  0    3    4
## 18            Fiat 128 32.4   4  78.7  66 4.08 19.47  1  1    4    1
## 19         Honda Civic 30.4   4  75.7  52 4.93 18.52  1  1    4    2
## 20      Toyota Corolla 33.9   4  71.1  65 4.22 19.90  1  1    4    1
## 21       Toyota Corona 21.5   4 120.1  97 3.70 20.01  1  0    3    1
## 22    Dodge Challenger 15.5   8 318.0 150 2.76 16.87  0  0    3    2
## 23         AMC Javelin 15.2   8 304.0 150 3.15 17.30  0  0    3    2
## 24          Camaro Z28 13.3   8 350.0 245 3.73 15.41  0  0    3    4
## 25    Pontiac Firebird 19.2   8 400.0 175 3.08 17.05  0  0    3    2
## 26           Fiat X1-9 27.3   4  79.0  66 4.08 18.90  1  1    4    1
## 27       Porsche 914-2 26.0   4 120.3  91 4.43 16.70  0  1    5    2
## 28        Lotus Europa 30.4   4  95.1 113 3.77 16.90  1  1    5    2
## 29      Ford Pantera L 15.8   8 351.0 264 4.22 14.50  0  1    5    4
## 30        Ferrari Dino 19.7   6 145.0 175 3.62 15.50  0  1    5    6
## 31       Maserati Bora 15.0   8 301.0 335 3.54 14.60  0  1    5    8
## 32          Volvo 142E 21.4   4 121.0 109 4.11 18.60  1  1    4    2
#To select multiple columns
select(carD, c(am, vs))
##    am vs
## 1   1  0
## 2   1  0
## 3   1  1
## 4   0  1
## 5   0  0
## 6   0  1
## 7   0  0
## 8   0  1
## 9   0  1
## 10  0  1
## 11  0  1
## 12  0  0
## 13  0  0
## 14  0  0
## 15  0  0
## 16  0  0
## 17  0  0
## 18  1  1
## 19  1  1
## 20  1  1
## 21  0  1
## 22  0  0
## 23  0  0
## 24  0  0
## 25  0  0
## 26  1  1
## 27  1  0
## 28  1  1
## 29  1  0
## 30  1  0
## 31  1  0
## 32  1  1
#To exclude multiple columns
select(carD, -c(am, vs))
##                      X  mpg cyl  disp  hp drat    wt  qsec gear carb
## 1            Mazda RX4 21.0   6 160.0 110 3.90 2.620 16.46    4    4
## 2        Mazda RX4 Wag 21.0   6 160.0 110 3.90 2.875 17.02    4    4
## 3           Datsun 710 22.8   4 108.0  93 3.85 2.320 18.61    4    1
## 4       Hornet 4 Drive 21.4   6 258.0 110 3.08 3.215 19.44    3    1
## 5    Hornet Sportabout 18.7   8 360.0 175 3.15 3.440 17.02    3    2
## 6              Valiant 18.1   6 225.0 105 2.76 3.460 20.22    3    1
## 7           Duster 360 14.3   8 360.0 245 3.21 3.570 15.84    3    4
## 8            Merc 240D 24.4   4 146.7  62 3.69 3.190 20.00    4    2
## 9             Merc 230 22.8   4 140.8  95 3.92 3.150 22.90    4    2
## 10            Merc 280 19.2   6 167.6 123 3.92 3.440 18.30    4    4
## 11           Merc 280C 17.8   6 167.6 123 3.92 3.440 18.90    4    4
## 12          Merc 450SE 16.4   8 275.8 180 3.07 4.070 17.40    3    3
## 13          Merc 450SL 17.3   8 275.8 180 3.07 3.730 17.60    3    3
## 14         Merc 450SLC 15.2   8 275.8 180 3.07 3.780 18.00    3    3
## 15  Cadillac Fleetwood 10.4   8 472.0 205 2.93 5.250 17.98    3    4
## 16 Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82    3    4
## 17   Chrysler Imperial 14.7   8 440.0 230 3.23 5.345 17.42    3    4
## 18            Fiat 128 32.4   4  78.7  66 4.08 2.200 19.47    4    1
## 19         Honda Civic 30.4   4  75.7  52 4.93 1.615 18.52    4    2
## 20      Toyota Corolla 33.9   4  71.1  65 4.22 1.835 19.90    4    1
## 21       Toyota Corona 21.5   4 120.1  97 3.70 2.465 20.01    3    1
## 22    Dodge Challenger 15.5   8 318.0 150 2.76 3.520 16.87    3    2
## 23         AMC Javelin 15.2   8 304.0 150 3.15 3.435 17.30    3    2
## 24          Camaro Z28 13.3   8 350.0 245 3.73 3.840 15.41    3    4
## 25    Pontiac Firebird 19.2   8 400.0 175 3.08 3.845 17.05    3    2
## 26           Fiat X1-9 27.3   4  79.0  66 4.08 1.935 18.90    4    1
## 27       Porsche 914-2 26.0   4 120.3  91 4.43 2.140 16.70    5    2
## 28        Lotus Europa 30.4   4  95.1 113 3.77 1.513 16.90    5    2
## 29      Ford Pantera L 15.8   8 351.0 264 4.22 3.170 14.50    5    4
## 30        Ferrari Dino 19.7   6 145.0 175 3.62 2.770 15.50    5    6
## 31       Maserati Bora 15.0   8 301.0 335 3.54 3.570 14.60    5    8
## 32          Volvo 142E 21.4   4 121.0 109 4.11 2.780 18.60    4    2
#The filter() is used the select the rows
filter(carD, vs==0)
##                      X  mpg cyl  disp  hp drat    wt  qsec vs am gear carb
## 1            Mazda RX4 21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
## 2        Mazda RX4 Wag 21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
## 3    Hornet Sportabout 18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
## 4           Duster 360 14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
## 5           Merc 450SE 16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
## 6           Merc 450SL 17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
## 7          Merc 450SLC 15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
## 8   Cadillac Fleetwood 10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
## 9  Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
## 10   Chrysler Imperial 14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
## 11    Dodge Challenger 15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
## 12         AMC Javelin 15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
## 13          Camaro Z28 13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
## 14    Pontiac Firebird 19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
## 15       Porsche 914-2 26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
## 16      Ford Pantera L 15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
## 17        Ferrari Dino 19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
## 18       Maserati Bora 15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
#To select with multiple criteria
filter(carD, vs==1 & am==1)
##                X  mpg cyl  disp  hp drat    wt  qsec vs am gear carb
## 1     Datsun 710 22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
## 2       Fiat 128 32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
## 3    Honda Civic 30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
## 4 Toyota Corolla 33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
## 5      Fiat X1-9 27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
## 6   Lotus Europa 30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
## 7     Volvo 142E 21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
#To select rows with more detailed criteria
filter(carD, vs==0 & am==1 & (hp < 100 | hp > 150))
##                X  mpg cyl  disp  hp drat   wt qsec vs am gear carb
## 1  Porsche 914-2 26.0   4 120.3  91 4.43 2.14 16.7  0  1    5    2
## 2 Ford Pantera L 15.8   8 351.0 264 4.22 3.17 14.5  0  1    5    4
## 3   Ferrari Dino 19.7   6 145.0 175 3.62 2.77 15.5  0  1    5    6
## 4  Maserati Bora 15.0   8 301.0 335 3.54 3.57 14.6  0  1    5    8
#To select the columns cyl and wt based on the row vs
carD %>% filter(vs==0) %>% select(c(cyl, wt))
##    cyl    wt
## 1    6 2.620
## 2    6 2.875
## 3    8 3.440
## 4    8 3.570
## 5    8 4.070
## 6    8 3.730
## 7    8 3.780
## 8    8 5.250
## 9    8 5.424
## 10   8 5.345
## 11   8 3.520
## 12   8 3.435
## 13   8 3.840
## 14   8 3.845
## 15   4 2.140
## 16   8 3.170
## 17   6 2.770
## 18   8 3.570
#To select the columns cyl and wt based on the rows vs=0 and hp>150
carD %>% filter(vs==0 & hp > 150) %>% select(c(cyl, wt))
##    cyl    wt
## 1    8 3.440
## 2    8 3.570
## 3    8 4.070
## 4    8 3.730
## 5    8 3.780
## 6    8 5.250
## 7    8 5.424
## 8    8 5.345
## 9    8 3.840
## 10   8 3.845
## 11   8 3.170
## 12   6 2.770
## 13   8 3.570
#The MUTATE() is used to create new columns
mutate(carD, wtton = 0.45*wt)
##                      X  mpg cyl  disp  hp drat    wt  qsec vs am gear carb
## 1            Mazda RX4 21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
## 2        Mazda RX4 Wag 21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
## 3           Datsun 710 22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
## 4       Hornet 4 Drive 21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
## 5    Hornet Sportabout 18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
## 6              Valiant 18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
## 7           Duster 360 14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
## 8            Merc 240D 24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
## 9             Merc 230 22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
## 10            Merc 280 19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
## 11           Merc 280C 17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
## 12          Merc 450SE 16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
## 13          Merc 450SL 17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
## 14         Merc 450SLC 15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
## 15  Cadillac Fleetwood 10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
## 16 Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
## 17   Chrysler Imperial 14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
## 18            Fiat 128 32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
## 19         Honda Civic 30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
## 20      Toyota Corolla 33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
## 21       Toyota Corona 21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
## 22    Dodge Challenger 15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
## 23         AMC Javelin 15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
## 24          Camaro Z28 13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
## 25    Pontiac Firebird 19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
## 26           Fiat X1-9 27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
## 27       Porsche 914-2 26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
## 28        Lotus Europa 30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
## 29      Ford Pantera L 15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
## 30        Ferrari Dino 19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
## 31       Maserati Bora 15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
## 32          Volvo 142E 21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
##      wtton
## 1  1.17900
## 2  1.29375
## 3  1.04400
## 4  1.44675
## 5  1.54800
## 6  1.55700
## 7  1.60650
## 8  1.43550
## 9  1.41750
## 10 1.54800
## 11 1.54800
## 12 1.83150
## 13 1.67850
## 14 1.70100
## 15 2.36250
## 16 2.44080
## 17 2.40525
## 18 0.99000
## 19 0.72675
## 20 0.82575
## 21 1.10925
## 22 1.58400
## 23 1.54575
## 24 1.72800
## 25 1.73025
## 26 0.87075
## 27 0.96300
## 28 0.68085
## 29 1.42650
## 30 1.24650
## 31 1.60650
## 32 1.25100
#To calculate wtton for the wt whose row is not NA
carD %>% filter(!is.na(wt)) %>% mutate(wtton = 0.45*wt)
##                      X  mpg cyl  disp  hp drat    wt  qsec vs am gear carb
## 1            Mazda RX4 21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
## 2        Mazda RX4 Wag 21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
## 3           Datsun 710 22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
## 4       Hornet 4 Drive 21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
## 5    Hornet Sportabout 18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
## 6              Valiant 18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
## 7           Duster 360 14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
## 8            Merc 240D 24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
## 9             Merc 230 22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
## 10            Merc 280 19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
## 11           Merc 280C 17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
## 12          Merc 450SE 16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
## 13          Merc 450SL 17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
## 14         Merc 450SLC 15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
## 15  Cadillac Fleetwood 10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
## 16 Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
## 17   Chrysler Imperial 14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
## 18            Fiat 128 32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
## 19         Honda Civic 30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
## 20      Toyota Corolla 33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
## 21       Toyota Corona 21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
## 22    Dodge Challenger 15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
## 23         AMC Javelin 15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
## 24          Camaro Z28 13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
## 25    Pontiac Firebird 19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
## 26           Fiat X1-9 27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
## 27       Porsche 914-2 26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
## 28        Lotus Europa 30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
## 29      Ford Pantera L 15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
## 30        Ferrari Dino 19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
## 31       Maserati Bora 15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
## 32          Volvo 142E 21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
##      wtton
## 1  1.17900
## 2  1.29375
## 3  1.04400
## 4  1.44675
## 5  1.54800
## 6  1.55700
## 7  1.60650
## 8  1.43550
## 9  1.41750
## 10 1.54800
## 11 1.54800
## 12 1.83150
## 13 1.67850
## 14 1.70100
## 15 2.36250
## 16 2.44080
## 17 2.40525
## 18 0.99000
## 19 0.72675
## 20 0.82575
## 21 1.10925
## 22 1.58400
## 23 1.54575
## 24 1.72800
## 25 1.73025
## 26 0.87075
## 27 0.96300
## 28 0.68085
## 29 1.42650
## 30 1.24650
## 31 1.60650
## 32 1.25100
#To check if the new variable/column wtton is in the data frame
colnames(carD)
##  [1] "X"    "mpg"  "cyl"  "disp" "hp"   "drat" "wt"   "qsec" "vs"   "am"  
## [11] "gear" "carb"
#To create another column
carD.New = carD %>% mutate(cyltype = (ifelse(cyl > 4, 'High', 'Low')))
carD.New
##                      X  mpg cyl  disp  hp drat    wt  qsec vs am gear carb
## 1            Mazda RX4 21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
## 2        Mazda RX4 Wag 21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
## 3           Datsun 710 22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
## 4       Hornet 4 Drive 21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
## 5    Hornet Sportabout 18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
## 6              Valiant 18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
## 7           Duster 360 14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
## 8            Merc 240D 24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
## 9             Merc 230 22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
## 10            Merc 280 19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
## 11           Merc 280C 17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
## 12          Merc 450SE 16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
## 13          Merc 450SL 17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
## 14         Merc 450SLC 15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
## 15  Cadillac Fleetwood 10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
## 16 Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
## 17   Chrysler Imperial 14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
## 18            Fiat 128 32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
## 19         Honda Civic 30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
## 20      Toyota Corolla 33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
## 21       Toyota Corona 21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
## 22    Dodge Challenger 15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
## 23         AMC Javelin 15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
## 24          Camaro Z28 13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
## 25    Pontiac Firebird 19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
## 26           Fiat X1-9 27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
## 27       Porsche 914-2 26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
## 28        Lotus Europa 30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
## 29      Ford Pantera L 15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
## 30        Ferrari Dino 19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
## 31       Maserati Bora 15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
## 32          Volvo 142E 21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
##    cyltype
## 1     High
## 2     High
## 3      Low
## 4     High
## 5     High
## 6     High
## 7     High
## 8      Low
## 9      Low
## 10    High
## 11    High
## 12    High
## 13    High
## 14    High
## 15    High
## 16    High
## 17    High
## 18     Low
## 19     Low
## 20     Low
## 21     Low
## 22    High
## 23    High
## 24    High
## 25    High
## 26     Low
## 27     Low
## 28     Low
## 29    High
## 30    High
## 31    High
## 32     Low
#Chaining and creating multiple columns with mutate
carD.New = carD %>% mutate(cyltype = (ifelse(cyl > 4, 'High', 'Low')),wtton = 0.45*wt)
carD.New
##                      X  mpg cyl  disp  hp drat    wt  qsec vs am gear carb
## 1            Mazda RX4 21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
## 2        Mazda RX4 Wag 21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
## 3           Datsun 710 22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
## 4       Hornet 4 Drive 21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
## 5    Hornet Sportabout 18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
## 6              Valiant 18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
## 7           Duster 360 14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
## 8            Merc 240D 24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
## 9             Merc 230 22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
## 10            Merc 280 19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
## 11           Merc 280C 17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
## 12          Merc 450SE 16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
## 13          Merc 450SL 17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
## 14         Merc 450SLC 15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
## 15  Cadillac Fleetwood 10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
## 16 Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
## 17   Chrysler Imperial 14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
## 18            Fiat 128 32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
## 19         Honda Civic 30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
## 20      Toyota Corolla 33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
## 21       Toyota Corona 21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
## 22    Dodge Challenger 15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
## 23         AMC Javelin 15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
## 24          Camaro Z28 13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
## 25    Pontiac Firebird 19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
## 26           Fiat X1-9 27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
## 27       Porsche 914-2 26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
## 28        Lotus Europa 30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
## 29      Ford Pantera L 15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
## 30        Ferrari Dino 19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
## 31       Maserati Bora 15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
## 32          Volvo 142E 21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
##    cyltype   wtton
## 1     High 1.17900
## 2     High 1.29375
## 3      Low 1.04400
## 4     High 1.44675
## 5     High 1.54800
## 6     High 1.55700
## 7     High 1.60650
## 8      Low 1.43550
## 9      Low 1.41750
## 10    High 1.54800
## 11    High 1.54800
## 12    High 1.83150
## 13    High 1.67850
## 14    High 1.70100
## 15    High 2.36250
## 16    High 2.44080
## 17    High 2.40525
## 18     Low 0.99000
## 19     Low 0.72675
## 20     Low 0.82575
## 21     Low 1.10925
## 22    High 1.58400
## 23    High 1.54575
## 24    High 1.72800
## 25    High 1.73025
## 26     Low 0.87075
## 27     Low 0.96300
## 28     Low 0.68085
## 29    High 1.42650
## 30    High 1.24650
## 31    High 1.60650
## 32     Low 1.25100
#To check if the new columns cyltype and wtton are in the data frame
colnames(carD.New)
##  [1] "X"       "mpg"     "cyl"     "disp"    "hp"      "drat"    "wt"     
##  [8] "qsec"    "vs"      "am"      "gear"    "carb"    "cyltype" "wtton"
#To use chaining with summarize
carD.New %>% summarise(mean(wtton))
##   mean(wtton)
## 1    1.447763
#To return the mean weight of displacement and wton
carD.New %>% summarise(mean(wtton), mean(disp))
##   mean(wtton) mean(disp)
## 1    1.447763   230.7219
#To chain group_by() and summarise
carD.New %>% group_by(cyltype) %>% summarise(mean(disp), mean(wtton))
## # A tibble: 2 × 3
##   cyltype `mean(disp)` `mean(wtton)`
##   <chr>          <dbl>         <dbl>
## 1 High            297.          1.67
## 2 Low             105.          1.03
carD.New %>% group_by(vs) %>% summarise(mean(wtton), mean(disp))
## # A tibble: 2 × 3
##   vs    `mean(wtton)` `mean(disp)`
##   <fct>         <dbl>        <dbl>
## 1 0              1.66         307.
## 2 1              1.18         132.
#To group, summarise and arrange in descending order
carD.New %>% group_by(cyltype) %>% summarise(mwt = mean(wtton), mdisp = mean(disp))
## # A tibble: 2 × 3
##   cyltype   mwt mdisp
##   <chr>   <dbl> <dbl>
## 1 High     1.67  297.
## 2 Low      1.03  105.
carD.New %>% group_by(vs) %>% summarise(mwt = mean(wtton), mdisp = mean(disp))
## # A tibble: 2 × 3
##   vs      mwt mdisp
##   <fct> <dbl> <dbl>
## 1 0      1.66  307.
## 2 1      1.18  132.
#To group and count
carD.New %>% count(cyltype, vs)
##   cyltype vs  n
## 1    High  0 17
## 2    High  1  4
## 3     Low  0  1
## 4     Low  1 10
carD.New %>% group_by(cyltype) %>% count()
## # A tibble: 2 × 2
## # Groups:   cyltype [2]
##   cyltype     n
##   <chr>   <int>
## 1 High       21
## 2 Low        11
#counting and sorting
carD.New %>% count(cyltype) %>% arrange(n)
##   cyltype  n
## 1     Low 11
## 2    High 21