library(Sleuth3)
library(ggplot2)
`?`(ex0923)
head(ex0923)
## Subject Gender AFQT Educ Income2005
## 1 2 female 6.841 12 5500
## 2 6 male 99.393 16 65000
## 3 7 male 47.412 12 19000
## 4 8 female 44.022 14 36000
## 5 9 male 59.683 14 65000
## 6 13 male 72.313 16 8000
str(ex0923)
## 'data.frame': 2584 obs. of 5 variables:
## $ Subject : int 2 6 7 8 9 13 16 17 18 20 ...
## $ Gender : Factor w/ 2 levels "female","male": 1 2 2 1 2 2 1 2 2 1 ...
## $ AFQT : num 6.84 99.39 47.41 44.02 59.68 ...
## $ Educ : int 12 16 12 14 14 16 13 13 13 17 ...
## $ Income2005: int 5500 65000 19000 36000 65000 8000 71000 43000 120000 64000 ...
qplot(AFQT, Income2005, data = ex0923)
qplot(AFQT, log(Income2005), data = ex0923)
qplot(Educ, Income2005, data = ex0923)
qplot(Educ, log(Income2005), data = ex0923)
qplot(Educ, AFQT, data = ex0923)
fit0923 <- lm(log(Income2005) ~ Gender + AFQT + Educ, data = ex0923)
summary(fit0923)
##
## Call:
## lm(formula = log(Income2005) ~ Gender + AFQT + Educ, data = ex0923)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.091 -0.330 0.140 0.509 2.545
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.731212 0.102629 85.08 < 2e-16 ***
## Gendermale 0.624509 0.034175 18.27 < 2e-16 ***
## AFQT 0.005914 0.000766 7.72 1.6e-14 ***
## Educ 0.076951 0.008489 9.06 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.866 on 2580 degrees of freedom
## Multiple R-squared: 0.21, Adjusted R-squared: 0.209
## F-statistic: 229 on 3 and 2580 DF, p-value: <2e-16
confint(fit0923)
## 2.5 % 97.5 %
## (Intercept) 8.529969 8.932454
## Gendermale 0.557496 0.691522
## AFQT 0.004413 0.007415
## Educ 0.060305 0.093596