Useful commands or R Markdown Cheat Sheet

Ignacio et al. (2022) Banyard, Hamby, and Grych (2017) Cai et al. (2024) Cano et al. (2020) Cromer et al. (2019) Hong et al. (2018) Ferber and Weller (2022) Callaghan et al. (2019) Chan et al. (2023) Weidacker et al. (2022) Hirshfeld-Becker et al. (2019) Gur et al. (2020) Bram, Gottschalk, and Leeds (2018) Wymbs et al. (2020) Bernstein and McNally (2018) Gildawie, Honeycutt, and Brenhouse (2020) Kuhlman et al. (2023) Kayser et al. (2019) Dvorsky et al. (2019) Kirby et al. (2022) Murphy et al. (2017) Carter, Powers, and Bradley (2020) Ramaiya et al. (2018) Sendzik et al. (2017) Wu, Slesnick, and Murnan (2018) Cornwell et al. (2024) Skinner et al. (2020) Gibbons and Bouldin (2019) Rodman et al. (2019) Higheagle Strong et al. (2020) McRae et al. (2017) Martinez Jr et al. (2022) Vannucci et al. (2019) Noroña-Zhou and Tung (2021) Motsan, Yirmiya, and Feldman (2022) Rich et al. (2019) Krause et al. (2018) Sui et al. (2020) Grych et al. (2020) Vega-Torres et al. (2020) Kliewer and Parham (2019) Griffith, Farrell-Rosen, and Hankin (2023) Siciliano et al. (2023) White et al. (2021) Bettis et al. (2019) Rudolph et al. (2024) Linke et al. (2020) Cornwell et al. (2023) Criss et al. (2017) Koban et al. (2017) Kashdan et al. (2020) Priel et al. (2020) Hannan et al. (2017) Malberg (2023) Tang, Tang, and Gross (2019) Caceres et al. (2024) Gupta, Dickey, and Kujawa (2022) Gee (2022) Khahra et al. (2024) Szoko et al. (2023) Barzilay et al. (2020) Jiang, Paley, and Shi (2022) Xiao et al. (2019) Finkelstein-Fox, Park, and Riley (2018) Sevinc et al. (2019) Blair et al. (2018) Buthmann et al. (2024) Schäfer et al. (2017) Smith and Jen’nan (2024) explored research focusing on various populations and areas to find the effects of several factors like living experience, environment, physical and mental health, and their relationship of emotion regulation and resilience development.

1 Steps for forth deliverable

This is where the steps go

#Procedures to decompose an adjacency list into a weighted graph
library(splitstackshape)
library(stringr)
library(igraph)
## 
## Attaching package: 'igraph'
## The following objects are masked from 'package:stats':
## 
##     decompose, spectrum
## The following object is masked from 'package:base':
## 
##     union
library(networkD3)
library(magrittr)
library(htmlwidgets)
## 
## Attaching package: 'htmlwidgets'
## The following object is masked from 'package:networkD3':
## 
##     JS
library(htmltools)

a<-read.csv("/Users/jinzeyang/Desktop/Fall 2024/Social Networks Analysis/A_Delieverables/US emotion regulation.csv")

#Get Author names
authors<-as.data.frame(a[,1])#"Author.s..ID"])
colnames(authors)<-"AU"

# remove number
authors$AU <- str_remove_all(authors$AU, "[^[\\a-zA-Z ]]")

a1<-cSplit(authors, splitCols = "AU", sep = ";", direction = "wide", drop = TRUE) 
class(a1)
## [1] "data.table" "data.frame"
#Matrix and Edgelist
mat <- as.matrix(a1)
dim(mat)
## [1] 70 16
# Combine authors and publications in a matrix
mat <- cbind(a$EID, mat)
edgelist1<-matrix(NA, 1, 2) 
for (i in 1:1) {
  edgelist11 <- cbind(mat[, i], c(mat[, -c(1:i)]))
  edgelist1 <- rbind(edgelist1,edgelist11)
  edgelist1<-edgelist1[!is.na(edgelist1[,2]),]
  edgelist1<-edgelist1[edgelist1[,2]!="",]
}
dim(edgelist1)
## [1] 407   2
head(edgelist1)
##      [,1]                 [,2]          
## [1,] "2-s2.0-85124618928" "Ignacio D.A."
## [2,] "2-s2.0-85010380267" "Banyard V."  
## [3,] "2-s2.0-85195804072" "Cai Y."      
## [4,] "2-s2.0-85078064575" "Cano M.."    
## [5,] "2-s2.0-85066870128" "Cromer K.D." 
## [6,] "2-s2.0-85054193257" "Hong F."
# Creating the Graph for future relationship analysis and visualization
g<- graph.data.frame(edgelist1[, 2:1], directed = FALSE)
g
## IGRAPH 8408a0e UN-- 446 407 -- 
## + attr: name (v/c)
## + edges from 8408a0e (vertex names):
##  [1] Ignacio D.A.         --2-s2.0-85124618928
##  [2] Banyard V.           --2-s2.0-85010380267
##  [3] Cai Y.               --2-s2.0-85195804072
##  [4] Cano M..             --2-s2.0-85078064575
##  [5] Cromer K.D.          --2-s2.0-85066870128
##  [6] Hong F.              --2-s2.0-85054193257
##  [7] Ferber S.G.          --2-s2.0-85126246871
##  [8] Callaghan B.L.       --2-s2.0-85067840050
## + ... omitted several edges
V(g)$type <- V(g)$name %in% edgelist1[ , 2]
table(V(g)$type)
## 
## FALSE  TRUE 
##    70   376
i<-table(V(g)$type)[2]
V(g)$label<-V(g)$name


#Transformations to count number of publications
mat_g2_incidence <- t(get.incidence(g))
dim(mat_g2_incidence)
## [1] 376  70
#summarize connections for authors->:publications and publications->authors
dta <- data.frame(id=rownames(mat_g2_incidence), count=rowSums(mat_g2_incidence))
dta <- dta[order(dta$count, decreasing=T), ]
head(dta)
##                      id count
## Compas B.E. Compas B.E.     3
## Banyard V.   Banyard V.     2
## Gur R.E.       Gur R.E.     2
## Cornwell H. Cornwell H.     2
## Grych J.       Grych J.     2
## Bettis A.H. Bettis A.H.     2
# Centrality Calculation
cent<-data.frame(bet=betweenness(g, normalized=T, directed = FALSE)/max(betweenness(g, normalized=T, directed = FALSE)),eig=evcent(g)$vector, degree=degree(g, mode="total")/max(degree(g, mode="total"))) 

head(cent)
##                      bet          eig degree
## Ignacio D.A. 0.000000000 7.864143e-18 0.0625
## Banyard V.   0.003766478 2.841011e-17 0.1250
## Cai Y.       0.000000000 0.000000e+00 0.0625
## Cano M..     0.000000000 1.915109e-18 0.0625
## Cromer K.D.  0.000000000 1.344740e-18 0.0625
## Hong F.      0.000000000 0.000000e+00 0.0625
tail(cent)
##                            bet          eig degree
## 2-s2.0-85053353883 0.016949153 7.854652e-17 0.1875
## 2-s2.0-85068574235 0.254237288 1.617130e-16 0.6250
## 2-s2.0-85042660960 0.033898305 1.043384e-16 0.2500
## 2-s2.0-85180495536 0.084745763 1.375635e-16 0.3750
## 2-s2.0-84991108157 0.121468927 1.065693e-16 0.3125
## 2-s2.0-85198504223 0.005649718 5.357882e-17 0.1250
#Aggregate centrality score of authors and publications. Separate their centrality.
cent$index <- rowSums(cent)
cent$name<-rownames(cent) #Ids in this case
head(cent);tail(cent)
##                      bet          eig degree     index         name
## Ignacio D.A. 0.000000000 7.864143e-18 0.0625 0.0625000 Ignacio D.A.
## Banyard V.   0.003766478 2.841011e-17 0.1250 0.1287665   Banyard V.
## Cai Y.       0.000000000 0.000000e+00 0.0625 0.0625000       Cai Y.
## Cano M..     0.000000000 1.915109e-18 0.0625 0.0625000     Cano M..
## Cromer K.D.  0.000000000 1.344740e-18 0.0625 0.0625000  Cromer K.D.
## Hong F.      0.000000000 0.000000e+00 0.0625 0.0625000      Hong F.
##                            bet          eig degree     index               name
## 2-s2.0-85053353883 0.016949153 7.854652e-17 0.1875 0.2044492 2-s2.0-85053353883
## 2-s2.0-85068574235 0.254237288 1.617130e-16 0.6250 0.8792373 2-s2.0-85068574235
## 2-s2.0-85042660960 0.033898305 1.043384e-16 0.2500 0.2838983 2-s2.0-85042660960
## 2-s2.0-85180495536 0.084745763 1.375635e-16 0.3750 0.4597458 2-s2.0-85180495536
## 2-s2.0-84991108157 0.121468927 1.065693e-16 0.3125 0.4339689 2-s2.0-84991108157
## 2-s2.0-85198504223 0.005649718 5.357882e-17 0.1250 0.1306497 2-s2.0-85198504223
head(cent)
##                      bet          eig degree     index         name
## Ignacio D.A. 0.000000000 7.864143e-18 0.0625 0.0625000 Ignacio D.A.
## Banyard V.   0.003766478 2.841011e-17 0.1250 0.1287665   Banyard V.
## Cai Y.       0.000000000 0.000000e+00 0.0625 0.0625000       Cai Y.
## Cano M..     0.000000000 1.915109e-18 0.0625 0.0625000     Cano M..
## Cromer K.D.  0.000000000 1.344740e-18 0.0625 0.0625000  Cromer K.D.
## Hong F.      0.000000000 0.000000e+00 0.0625 0.0625000      Hong F.
# For authors: 
cent$bet[1:i]<-(cent$bet[1:i]/max(cent$bet[1:i]))#*10
cent$eig[1:i]<-cent$eig[1:i]/max(cent$eig[1:i])
cent$degree[1:i]<-cent$degree[1:i]/max(cent$degree[1:i])#*5
summary(cent[1:i,])
##       bet                eig              degree           index        
##  Min.   :0.000000   Min.   :0.00000   Min.   :0.3333   Min.   :0.06250  
##  1st Qu.:0.000000   1st Qu.:0.00000   1st Qu.:0.3333   1st Qu.:0.06250  
##  Median :0.000000   Median :0.00000   Median :0.3333   Median :0.06250  
##  Mean   :0.009559   Mean   :0.04125   Mean   :0.3608   Mean   :0.08836  
##  3rd Qu.:0.000000   3rd Qu.:0.00000   3rd Qu.:0.3333   3rd Qu.:0.06250  
##  Max.   :1.000000   Max.   :1.00000   Max.   :1.0000   Max.   :0.76754  
##      name          
##  Length:376        
##  Class :character  
##  Mode  :character  
##                    
##                    
## 
#For publications
cent$bet[(i+1):nrow(cent)]<-cent$bet[(i+1):nrow(cent)]/max(cent$bet[(i+1):nrow(cent)])#*20
cent$eig[(i+1):nrow(cent)]<-cent$eig[(i+1):nrow(cent)]/max(cent$eig[(i+1):nrow(cent)])
cent$degree[(i+1):nrow(cent)]<-cent$degree[(i+1):nrow(cent)]/max(cent$degree[(i+1):nrow(cent)])#*10
summary(cent[(i+1):nrow(cent),])
##       bet               eig              degree           index       
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.0625   Min.   :0.0625  
##  1st Qu.:0.03178   1st Qu.:0.00000   1st Qu.:0.1875   1st Qu.:0.2553  
##  Median :0.08475   Median :0.00000   Median :0.3438   Median :0.4469  
##  Mean   :0.15125   Mean   :0.02803   Mean   :0.3634   Mean   :0.5427  
##  3rd Qu.:0.16667   3rd Qu.:0.00000   3rd Qu.:0.4375   3rd Qu.:0.6110  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.0000   Max.   :2.5085  
##      name          
##  Length:70         
##  Class :character  
##  Mode  :character  
##                    
##                    
## 
head(cent)
##                      bet          eig    degree     index         name
## Ignacio D.A. 0.000000000 2.139866e-17 0.3333333 0.0625000 Ignacio D.A.
## Banyard V.   0.006493506 7.730509e-17 0.6666667 0.1287665   Banyard V.
## Cai Y.       0.000000000 0.000000e+00 0.3333333 0.0625000       Cai Y.
## Cano M..     0.000000000 5.211091e-18 0.3333333 0.0625000     Cano M..
## Cromer K.D.  0.000000000 3.659094e-18 0.3333333 0.0625000  Cromer K.D.
## Hong F.      0.000000000 0.000000e+00 0.3333333 0.0625000      Hong F.
# Get maximum centrality
cent$max_cent <- NA
cent$max_cent[1:i] <- cent$eig[1:i] + cent$degree[1:i] + cent$bet[1:i] 
cent$max_cent[(i+1):nrow(cent)] <- cent$eig[(i+1):nrow(cent)] + cent$degree[(i+1):nrow(cent)] + cent$bet[(i+1):nrow(cent)]

# Rank by centrality
cent<- cent[order(cent$max_cent, decreasing=T),] 
head(cent)
##                            bet          eig    degree     index
## 2-s2.0-85184577079 0.508474576 1.000000e+00 1.0000000 2.5084746
## 2-s2.0-85165091093 0.418079096 9.622778e-01 0.9375000 2.3178569
## 2-s2.0-85091775089 1.000000000 3.619556e-16 1.0000000 2.0000000
## Compas B.E.        1.000000000 7.054650e-17 1.0000000 0.7675377
## Smaragdi A.        0.008991009 1.000000e+00 0.6666667 0.4977215
## Konrad K.          0.008991009 1.000000e+00 0.6666667 0.4977215
##                                  name max_cent
## 2-s2.0-85184577079 2-s2.0-85184577079 2.508475
## 2-s2.0-85165091093 2-s2.0-85165091093 2.317857
## 2-s2.0-85091775089 2-s2.0-85091775089 2.000000
## Compas B.E.               Compas B.E. 2.000000
## Smaragdi A.               Smaragdi A. 1.675658
## Konrad K.                   Konrad K. 1.675658
summary(a$Cited.by)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00    4.25   12.50   37.50   39.50  537.00
head(a$EID)
## [1] "2-s2.0-85124618928" "2-s2.0-85010380267" "2-s2.0-85195804072"
## [4] "2-s2.0-85078064575" "2-s2.0-85066870128" "2-s2.0-85054193257"
# Adding attributes
#Citation count or publication count
V(g)$pub_citat_count <- c(dta$count[match(V(g)$label[1:i], dta$id)], a$Cited.by[match(V(g)$label[(i+1):length(V(g)$name)], a$EID)]) 
summary(V(g)$pub_citat_count)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   1.000   1.000   6.798   1.000 537.000
V(g)$label <- c(paste("Name: ", V(g)$label[1:i], ", Pub. count = ", V(g)$pub_citat_count[1:i], ", Degree = ", degree(g)[1:i], ", Max Centrality (max = 3) = ", round(cent$max_cent[match(V(g)$label[1:i], cent$name)], 3) , sep=""), 
                paste("EID: ", V(g)$label[(i+1):length(V(g)$name)], ", Citation count = ", V(g)$pub_citat_count[(i+1):length(V(g)$name)], ", Degree = ", degree(g)[(i+1):length(V(g)$name)], ", Max Centrality (max = 3) = ", round(cent$max_cent[match(V(g)$label[(i+1):length(V(g)$name)], cent$name)], 3) , sep="")) 
head(V(g)$label)
## [1] "Name: Ignacio D.A., Pub. count = 1, Degree = 1, Max Centrality (max = 3) = 0.333"
## [2] "Name: Banyard V., Pub. count = 2, Degree = 2, Max Centrality (max = 3) = 0.673"  
## [3] "Name: Cai Y., Pub. count = 1, Degree = 1, Max Centrality (max = 3) = 0.333"      
## [4] "Name: Cano M.., Pub. count = 1, Degree = 1, Max Centrality (max = 3) = 0.333"    
## [5] "Name: Cromer K.D., Pub. count = 1, Degree = 1, Max Centrality (max = 3) = 0.333" 
## [6] "Name: Hong F., Pub. count = 1, Degree = 1, Max Centrality (max = 3) = 0.333"
tail(V(g)$label)
## [1] "EID: 2-s2.0-85053353883, Citation count = 29, Degree = 3, Max Centrality (max = 3) = 0.204" 
## [2] "EID: 2-s2.0-85068574235, Citation count = 38, Degree = 10, Max Centrality (max = 3) = 0.879"
## [3] "EID: 2-s2.0-85042660960, Citation count = 16, Degree = 4, Max Centrality (max = 3) = 0.284" 
## [4] "EID: 2-s2.0-85180495536, Citation count = 0, Degree = 6, Max Centrality (max = 3) = 0.46"   
## [5] "EID: 2-s2.0-84991108157, Citation count = 537, Degree = 5, Max Centrality (max = 3) = 0.434"
## [6] "EID: 2-s2.0-85198504223, Citation count = 0, Degree = 2, Max Centrality (max = 3) = 0.131"
links_p<-as.data.frame(cbind(get.edgelist(g)))
links_p$V3<-as.numeric(a$Cited.by)[match(links_p$V2, a$EID)] #V3 citation count
head(links_p)
##             V1                 V2 V3
## 1 Ignacio D.A. 2-s2.0-85124618928  6
## 2   Banyard V. 2-s2.0-85010380267 95
## 3       Cai Y. 2-s2.0-85195804072  0
## 4     Cano M.. 2-s2.0-85078064575 49
## 5  Cromer K.D. 2-s2.0-85066870128  7
## 6      Hong F. 2-s2.0-85054193257 61
tail(links_p)
##                V1                 V2  V3
## 402   De Brito S. 2-s2.0-85165091093   5
## 403       Riis V. 2-s2.0-85091775089 112
## 404 De Brito S.A. 2-s2.0-85184577079   0
## 405  Fairchild G. 2-s2.0-85165091093   5
## 406  Elovitz M.A. 2-s2.0-85091775089 112
## 407  Fairchild G. 2-s2.0-85184577079   0
links_p$V4<-a$Title[match(links_p$V2, a$EID)] #publication title

# Making edgelist for interactive visualization
V(g)$name<-1:length(V(g))-1

links<-as.data.frame(cbind(get.edgelist(g)))
links$V1<-as.numeric(as.character(links$V1))
links$V2<-as.numeric(as.character(links$V2))
links$V3 <- links_p$V3
links$V4 <- links_p$V4
str(links)
## 'data.frame':    407 obs. of  4 variables:
##  $ V1: num  0 1 2 3 4 5 6 7 8 9 ...
##  $ V2: num  376 377 378 379 380 381 382 383 384 385 ...
##  $ V3: num  6 95 0 49 7 61 3 61 6 2 ...
##  $ V4: chr  "Individual, family, and social correlates of flourishing outcomes among youth: Findings from the 2016–2017 Nati"| __truncated__ "Health effects of adverse childhood events: Identifying promising protective factors at the intersection of men"| __truncated__ "general psychopathology factor in Chinese adolescents and its correlation with trans-diagnostic protective psyc"| __truncated__ "Depressive Symptoms and Resilience among Hispanic Emerging Adults: Examining the Moderating Effects of Mindfuln"| __truncated__ ...
head(links)
##   V1  V2 V3
## 1  0 376  6
## 2  1 377 95
## 3  2 378  0
## 4  3 379 49
## 5  4 380  7
## 6  5 381 61
##                                                                                                                                                                                                V4
## 1                                                 Individual, family, and social correlates of flourishing outcomes among youth: Findings from the 2016–2017 National Survey of Children's Health
## 2                                                      Health effects of adverse childhood events: Identifying promising protective factors at the intersection of mental and physical well-being
## 3                                                                general psychopathology factor in Chinese adolescents and its correlation with trans-diagnostic protective psycho-social factors
## 4 Depressive Symptoms and Resilience among Hispanic Emerging Adults: Examining the Moderating Effects of Mindfulness, Distress Tolerance, Emotion Regulation, Family Cohesion, and Social Support
## 5                                                                                                      After-school poly-strengths programming for urban teens at high risk for violence exposure
## 6                                                           Childhood maltreatment and perceived stress in young adults: The role of emotion regulation strategies, self-efficacy, and resilience
colnames(links)<-c("source","target", "citation", "title") 
# sources: the number of starting point of connection; target: the number of ending point of teh connection

# create a object called group.
nodes <- data.frame(name= V(g)$label, pubs_citation = V(g)$pub_citat_count, groups = ifelse(V(g)$type==1, "Author", "Article"))
head(nodes)
##                                                                               name
## 1 Name: Ignacio D.A., Pub. count = 1, Degree = 1, Max Centrality (max = 3) = 0.333
## 2   Name: Banyard V., Pub. count = 2, Degree = 2, Max Centrality (max = 3) = 0.673
## 3       Name: Cai Y., Pub. count = 1, Degree = 1, Max Centrality (max = 3) = 0.333
## 4     Name: Cano M.., Pub. count = 1, Degree = 1, Max Centrality (max = 3) = 0.333
## 5  Name: Cromer K.D., Pub. count = 1, Degree = 1, Max Centrality (max = 3) = 0.333
## 6      Name: Hong F., Pub. count = 1, Degree = 1, Max Centrality (max = 3) = 0.333
##   pubs_citation groups
## 1             1 Author
## 2             2 Author
## 3             1 Author
## 4             1 Author
## 5             1 Author
## 6             1 Author
summary(nodes$pubs_citation)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   1.000   1.000   6.798   1.000 537.000
{
  nodes$group<-NA
  nodes$group <-cut(nodes$pubs_citation, c(0,1,3,10,20,max(nodes$pubs_citation)), right=TRUE, include.lowest = TRUE)
  table(is.na(nodes$group))
  table(nodes$group)
  head(nodes[is.na(nodes$group),],20)
  nodes$group<-ifelse(is.na(nodes$group), "No Citation", ifelse(nodes$group=="[0,1]", "0 or 1 cit/pub", ifelse(nodes$group=="(1,3]", "2 or 3 cit/pub", ifelse(nodes$group=="(3,10]", "4 to 10 cit/pub", ifelse(nodes$group=="(10,20]", "11 to 20 cit/pub", "Over 20 cit/pub")))))
  counts<-data.frame(table(nodes$group))
  
  counts$labels <- paste(counts$Var1, ", N= ", counts$Freq, sep="")
  nodes$groups <- counts$labels[match(nodes$group, counts$Var1)] 
  head(nodes)
}
##                                                                               name
## 1 Name: Ignacio D.A., Pub. count = 1, Degree = 1, Max Centrality (max = 3) = 0.333
## 2   Name: Banyard V., Pub. count = 2, Degree = 2, Max Centrality (max = 3) = 0.673
## 3       Name: Cai Y., Pub. count = 1, Degree = 1, Max Centrality (max = 3) = 0.333
## 4     Name: Cano M.., Pub. count = 1, Degree = 1, Max Centrality (max = 3) = 0.333
## 5  Name: Cromer K.D., Pub. count = 1, Degree = 1, Max Centrality (max = 3) = 0.333
## 6      Name: Hong F., Pub. count = 1, Degree = 1, Max Centrality (max = 3) = 0.333
##   pubs_citation                 groups          group
## 1             1 0 or 1 cit/pub, N= 355 0 or 1 cit/pub
## 2             2  2 or 3 cit/pub, N= 35 2 or 3 cit/pub
## 3             1 0 or 1 cit/pub, N= 355 0 or 1 cit/pub
## 4             1 0 or 1 cit/pub, N= 355 0 or 1 cit/pub
## 5             1 0 or 1 cit/pub, N= 355 0 or 1 cit/pub
## 6             1 0 or 1 cit/pub, N= 355 0 or 1 cit/pub
table(nodes$group)
## 
##   0 or 1 cit/pub 11 to 20 cit/pub   2 or 3 cit/pub  4 to 10 cit/pub 
##              355               10               35               20 
##  Over 20 cit/pub 
##               26
table(nodes$groups)
## 
##  0 or 1 cit/pub, N= 355 11 to 20 cit/pub, N= 10   2 or 3 cit/pub, N= 35 
##                     355                      10                      35 
##  4 to 10 cit/pub, N= 20  Over 20 cit/pub, N= 26 
##                      20                      26
##########
#Following could not show in docs but I attach the link in the below Question&Answer part

# ColourScale <- 'd3.scaleOrdinal()
#            .domain(["0 or 1 cit/pub, N= 355", "11 to 20 cit/pub, N= 10", "2 or 3 cit/pub, N= 35", "4 to 10 cit/pub, N= 20", "Over 20 cit/pub, N= 26"])
#           .range(["#ff3397", "#e5ff33", "#F4BB44", "#B2BEB5", "#EE4B2B"]);'


#netviz<-forceNetwork(Links = links, Nodes = nodes,
#                     Source = 'source', Target = 'target',
 #                    NodeID = 'name',
  #                   Group = "groups", # color nodes by group calculated earlier
   #                  charge = -20, # node repulsion
    #                 linkDistance = JS("function(d) { return d.linkDistance; }"),#JS("function(d){return d.value}"),
  #                   linkWidth = JS("function(d) { return Math.sqrt(d.citation)*4; }"),
   #                  opacity = 0.8,
    #                 Value = "citation",
    #                 Nodesize = 'pubs_citation', 
     #                radiusCalculation = JS("Math.sqrt(d.nodesize*30)+10"),
      #               zoom = T, 
       #              fontSize=14,
        #             bounded= F,
         #            legend= TRUE,
                     # linkColour = ifelse(links$campus == "NEUNK", "#CCFFFF", ifelse(links$campus == "NEUNL", "#e3eaa7", "#abb2b9")),
          #           colourScale = JS(ColourScale))

#HTMLaddons <- 
  "function(el, x) { 
d3.select('body').style('background-color', ' #36454F')
d3.selectAll('.legend text').style('fill', 'white') 
 d3.selectAll('.link').append('svg:title')
      .text(function(d) { return 'Number of citations : ' + d.value + ', Title: ' + d.title ; })
  var options = x.options;
  var svg = d3.select(el).select('svg')
  var node = svg.selectAll('.node');
  var link = svg.selectAll('link');
  var mouseout = d3.selectAll('.node').on('mouseout');
  function nodeSize(d) {
    if (options.nodesize) {
      return eval(options.radiusCalculation);
    } else {
      return 6;
    }
  }

  
d3.selectAll('.node').on('click', onclick)

  function onclick(d) {
    if (d3.select(this).on('mouseout') == mouseout) {
      d3.select(this).on('mouseout', mouseout_clicked);
    } else {
      d3.select(this).on('mouseout', mouseout);
    }
  }

  function mouseout_clicked(d) {
    node.style('opacity', +options.opacity);
    link.style('opacity', +options.opacity);

    d3.select(this).select('circle').transition()
      .duration(750)
      .attr('r', function(d){return nodeSize(d);});
    d3.select(this).select('text').transition()
    
      .duration(1250)
      .attr('x', 0)
      .style('font', options.fontSize + 'px ');
  }

}
"
## [1] "function(el, x) { \nd3.select('body').style('background-color', ' #36454F')\nd3.selectAll('.legend text').style('fill', 'white') \n d3.selectAll('.link').append('svg:title')\n      .text(function(d) { return 'Number of citations : ' + d.value + ', Title: ' + d.title ; })\n  var options = x.options;\n  var svg = d3.select(el).select('svg')\n  var node = svg.selectAll('.node');\n  var link = svg.selectAll('link');\n  var mouseout = d3.selectAll('.node').on('mouseout');\n  function nodeSize(d) {\n    if (options.nodesize) {\n      return eval(options.radiusCalculation);\n    } else {\n      return 6;\n    }\n  }\n\n  \nd3.selectAll('.node').on('click', onclick)\n\n  function onclick(d) {\n    if (d3.select(this).on('mouseout') == mouseout) {\n      d3.select(this).on('mouseout', mouseout_clicked);\n    } else {\n      d3.select(this).on('mouseout', mouseout);\n    }\n  }\n\n  function mouseout_clicked(d) {\n    node.style('opacity', +options.opacity);\n    link.style('opacity', +options.opacity);\n\n    d3.select(this).select('circle').transition()\n      .duration(750)\n      .attr('r', function(d){return nodeSize(d);});\n    d3.select(this).select('text').transition()\n\t\n      .duration(1250)\n      .attr('x', 0)\n      .style('font', options.fontSize + 'px ');\n  }\n\n}\n"
#netviz$x$links$value <- links$citation
#netviz$x$links$title <- links$title
#netviz$x$links$linkDistance <- (links$citation)*50 #if want citation inverse #"1-(links$citation)*50" at the end
#onRender(netviz, HTMLaddons)

2 Plot in Rhubs: http://rpubs.com/jinzey/1249543

3 Questions:

3.1 Explain why you selected to map the co-authors or start with the two-mode form and the get the co-authors via network transformation.

Answer:

I chose the two-mode network first because it includes solo authors, allowing us to represent their positions and contributions within the dataset. Additionally, a two-mode network provides more detailed data for analyzing both the connections between authors and articles, as well as their co-authorships in the same publications. This approach enables us to explore the relationships between papers and authors more thoroughly. Adding attributes also makes the entire network more inclusive.

3.2 Tell us WHY should we even care about doing all of this (or do we)?

Answer:

Besides creating the interactive network visualization, we also added publication counts and centrality degrees as attributes in the network.

Without visualization, we can only interpret connection strengths through numbers, which can be vague and subjective. Interactive visualizations, on the other hand, provide a more comprehensive perspective by mapping the network visually. They allow us to explore specific connected groups in detail and retrieve more information about those connections. The visualized network helps us understand how publications on emotion regulation contribute to one another and how authors collaborate on their work. One of the goals of choosing this dataset was to better understand these relationships, and the visualization enabled me to see them more directly and clearly.

Moreover, if we hadn’t added attributes, we could only see publication IDs, author names, and whether they are connected without any further details. By including attributes, we can access more detailed information about the authors, such as their names, publication counts, and centrality measures. Attributes adding allows us to understand how an author’s work contributes to other publications and how their works are interconnected. It also helps us group authors more effectively, enabling us to focus on reading their relevant publications together.

References

Banyard, Victoria, Sherry Hamby, and John Grych. 2017. “Health Effects of Adverse Childhood Events: Identifying Promising Protective Factors at the Intersection of Mental and Physical Well-Being.” Child Abuse & Neglect 65: 88–98.
Barzilay, Ran, Tyler M Moore, David M Greenberg, Grace E DiDomenico, Lily A Brown, Lauren K White, Ruben C Gur, and Raquel E Gur. 2020. “Resilience, COVID-19-Related Stress, Anxiety and Depression During the Pandemic in a Large Population Enriched for Healthcare Providers.” Translational Psychiatry 10 (1): 291.
Bernstein, Emily E, and Richard J McNally. 2018. “Exercise as a Buffer Against Difficulties with Emotion Regulation: A Pathway to Emotional Wellbeing.” Behaviour Research and Therapy 109: 29–36.
Bettis, Alexandra H, Lauren Henry, Kemar V Prussien, Allison Vreeland, Michele Smith, Laura H Adery, and Bruce E Compas. 2019. “Laboratory and Self-Report Methods to Assess Reappraisal and Distraction in Youth.” Journal of Clinical Child & Adolescent Psychology.
Blair, Melanie A, George Nitzburg, Pamela DeRosse, and Katherine H Karlsgodt. 2018. “Relationship Between Executive Function, Attachment Style, and Psychotic Like Experiences in Typically Developing Youth.” Schizophrenia Research 197: 428–33.
Bram, Anthony D, Kiley A Gottschalk, and William M Leeds. 2018. “Emotional Regulation in Women with Chronic Fatigue Syndrome and Depression: Internal Representations and Adaptive Defenses.” Journal of the American Psychoanalytic Association 66 (4): 701–41.
Buthmann, Jessica L, Jonas G Miller, Jessica P Uy, Saché M Coury, Booil Jo, and Ian H Gotlib. 2024. “Early Life Stress Predicts Trajectories of Emotional Problems and Hippocampal Volume in Adolescence.” European Child & Adolescent Psychiatry 33 (7): 2331–42.
Caceres, Gabriella A, Kiana A Scambray, Kathleen Malee, Renee Smith, Paige L Williams, Lei Wang, Lisanne M Jenkins, et al. 2024. “Relationship Between Brain Structural Network Integrity and Emotional Symptoms in Youth with Perinatally-Acquired HIV.” Brain, Behavior, and Immunity 116: 101–13.
Cai, Yuqing, Xinshu She, Manpreet K Singh, Huan Wang, Min Wang, Cody Abbey, Scott Rozelle, and Lian Tong. 2024. “General Psychopathology Factor in Chinese Adolescents and Its Correlation with Trans-Diagnostic Protective Psycho-Social Factors.” Journal of Affective Disorders.
Callaghan, Bridget L, Dylan G Gee, Laurel Gabard-Durnam, Eva H Telzer, Kathryn L Humphreys, Bonnie Goff, Mor Shapiro, et al. 2019. “Decreased Amygdala Reactivity to Parent Cues Protects Against Anxiety Following Early Adversity: An Examination Across 3 Years.” Biological Psychiatry: Cognitive Neuroscience and Neuroimaging 4 (7): 664–71.
Cano, Miguel Ángel, Felipe González Castro, Mario De La Rosa, Hortensia Amaro, William A Vega, Mariana Sánchez, Patria Rojas, et al. 2020. “Depressive Symptoms and Resilience Among Hispanic Emerging Adults: Examining the Moderating Effects of Mindfulness, Distress Tolerance, Emotion Regulation, Family Cohesion, and Social Support.” Behavioral Medicine 46 (3-4): 245–57.
Carter, Sierra, Abigail Powers, and Bekh Bradley. 2020. “PTSD and Self-Rated Health in Urban Traumatized African American Adults: The Mediating Role of Emotion Regulation.” Psychological Trauma: Theory, Research, Practice, and Policy 12 (1): 84.
Chan, Elizabeth SM, Connie Barroso, Nicole B Groves, Carolyn L Marsh, Katie Black, Emma M Jaisle, and Michael J Kofler. 2023. “A Preliminary’shortlist’of Individual, Family, and Social-Community Assets to Promote Resilience in Pediatric ADHD.” Research in Developmental Disabilities 140: 104568.
Cornwell, Harriet, Nicola Toschi, Catherine Hamilton-Giachritsis, Marlene Staginnus, Areti Smaragdi, Karen Gonzalez-Madruga, Nuria Mackes, et al. 2024. “Identifying Cortical Structure Markers of Resilience to Adversity in Young People Using Surface-Based Morphometry.” Social Cognitive and Affective Neuroscience 19 (1): nsae006.
Cornwell, Harriet, Nicola Toschi, Catherine Hamilton-Giachritsis, Marlene Staginnus, Areti Smaragdi, Karen Gonzalez-Madruga, Jack Rogers, et al. 2023. “Identifying Structural Brain Markers of Resilience to Adversity in Young People Using Voxel-Based Morphometry.” Development and Psychopathology 35 (5): 2302–14.
Criss, Michael M, Amy M Smith, Amanda Sheffield Morris, Chao Liu, and Rebecca L Hubbard. 2017. “Parents and Peers as Protective Factors Among Adolescents Exposed to Neighborhood Risk.” Journal of Applied Developmental Psychology 53: 127–38.
Cromer, Kelly D, Emily M D’Agostino, Eric Hansen, Caitlin Alfonso, and Stacy L Frazier. 2019. “After-School Poly-Strengths Programming for Urban Teens at High Risk for Violence Exposure.” Translational Behavioral Medicine 9 (3): 541–48.
Dvorsky, Melissa R, Michael J Kofler, G Leonard Burns, Aaron M Luebbe, Annie A Garner, Matthew A Jarrett, Elia F Soto, and Stephen P Becker. 2019. “Factor Structure and Criterion Validity of the Five Cs Model of Positive Youth Development in a Multi-University Sample of College Students.” Journal of Youth and Adolescence 48: 537–53.
Ferber, Sari Goldstein, and Aron Weller. 2022. “The Inanimate Third: Going Beyond Psychodynamic Approaches for Remote Psychotherapy During the COVID-19 Pandemic.” British Journal of Psychotherapy 38 (2): 316–37.
Finkelstein-Fox, Lucy, Crystal L Park, and Kristen E Riley. 2018. “Mindfulness and Emotion Regulation: Promoting Well-Being During the Transition to College.” Anxiety, Stress, & Coping 31 (6): 639–53.
Gee, Dylan G. 2022. “Neurodevelopmental Mechanisms Linking Early Experiences and Mental Health: Translating Science to Promote Well-Being Among Youth.” American Psychologist 77 (9): 1033.
Gibbons, Jeffrey A, and Briana Bouldin. 2019. “Videogame Play and Events Are Related to Unhealthy Emotion Regulation in the Form of Low Fading Affect Bias in Autobiographical Memory.” Consciousness and Cognition 74: 102778.
Gildawie, Kelsea R, Jennifer A Honeycutt, and Heather C Brenhouse. 2020. “Region-Specific Effects of Maternal Separation on Perineuronal Net and Parvalbumin-Expressing Interneuron Formation in Male and Female Rats.” Neuroscience 428: 23–37.
Griffith, Julianne M, Talia S Farrell-Rosen, and Benjamin L Hankin. 2023. “Daily Life Positive Affect Regulation in Early Adolescence: Associations with Symptoms of Depression.” Emotion 23 (3): 664.
Grych, John, Elizabeth Taylor, Victoria Banyard, and Sherry Hamby. 2020. “Applying the Dual Factor Model of Mental Health to Understanding Protective Factors in Adolescence.” American Journal of Orthopsychiatry 90 (4): 458.
Gupta, Resh S, Lindsay Dickey, and Autumn Kujawa. 2022. “Neural Markers of Emotion Regulation Difficulties Moderate Effects of COVID-19 Stressors on Adolescent Depression.” Depression and Anxiety 39 (6): 515–23.
Gur, Raquel E, Lauren K White, Rebecca Waller, Ran Barzilay, Tyler M Moore, Sara Kornfield, Wanjiku FM Njoroge, et al. 2020. “The Disproportionate Burden of the COVID-19 Pandemic Among Pregnant Black Women.” Psychiatry Research 293: 113475.
Hannan, Susan M, Holly K Orcutt, Lynsey R Miron, and Kristen L Thompson. 2017. “Childhood Sexual Abuse and Later Alcohol-Related Problems: Investigating the Roles of Revictimization, PTSD, and Drinking Motivations Among College Women.” Journal of Interpersonal Violence 32 (14): 2118–38.
Higheagle Strong, Zoe, Emma M McMain, Karin S Frey, Rachel M Wong, Shenghai Dai, and Gan Jin. 2020. “Ethnically Diverse Adolescents Recount Third-Party Actions That Amplify Their Anger and Calm Their Emotions After Perceived Victimization.” Journal of Adolescent Research 35 (4): 461–88.
Hirshfeld-Becker, Dina R, John DE Gabrieli, Benjamin G Shapero, Joseph Biederman, Susan Whitfield-Gabrieli, and Xiaoqian J Chai. 2019. “Intrinsic Functional Brain Connectivity Predicts Onset of Major Depression Disorder in Adolescence: A Pilot Study.” Brain Connectivity 9 (5): 388–98.
Hong, Fang, Amanda R Tarullo, Andrea E Mercurio, Siyu Liu, Qiyue Cai, and Kathleen Malley-Morrison. 2018. “Childhood Maltreatment and Perceived Stress in Young Adults: The Role of Emotion Regulation Strategies, Self-Efficacy, and Resilience.” Child Abuse & Neglect 86: 136–46.
Ignacio, Daniel Andre, Jessica Emick-Seibert, Dylan G Serpas, Yuliana Stacy Fernandez, Sonali Bargotra, and Joe Bush. 2022. “Individual, Family, and Social Correlates of Flourishing Outcomes Among Youth: Findings from the 2016–2017 National Survey of Children’s Health.” Child Abuse & Neglect 127: 105560.
Jiang, Xu, Netanel Paley, and Dexin Shi. 2022. “Examining the Validity and Measurement Invariance Across Gender and Race of the Implicit Thoughts, Emotion, and Behavior Questionnaire.” School Psychology 37 (4): 330.
Kashdan, Todd B, David J Disabato, Fallon R Goodman, James D Doorley, and Patrick E McKnight. 2020. “Understanding Psychological Flexibility: A Multimethod Exploration of Pursuing Valued Goals Despite the Presence of Distress.” Psychological Assessment 32 (9): 829.
Kayser, Jürgen, Craig E Tenke, Connie Svob, Marc J Gameroff, Lisa Miller, Jamie Skipper, Virginia Warner, Priya Wickramaratne, and Myrna M Weissman. 2019. “Family Risk for Depression and Prioritization of Religion or Spirituality: Early Neurophysiological Modulations of Motivated Attention.” Frontiers in Human Neuroscience 13: 436.
Khahra, Amardeep, Alvin Thomas, Adrian Gale, and Stephanie Rowley. 2024. “The Influence of Racial Socialization, Mentor Support, and Emotion Regulation on the Psychological Well-Being of African American Boys.” Journal of Youth and Adolescence, 1–13.
Kirby, Karen, Sharon Sweeney, Cherie Armour, Kathryn Goetzke, Marie Dunne, Mairead Davidson, and Myron Belfer. 2022. “Developing Hopeful Minds: Can Teaching Hope Improve Well-Being and Protective Factors in Children?” Child Care in Practice 28 (4): 504–21.
Kliewer, Wendy, and Brittani Parham. 2019. “Resilience Against Marijuana Use Initiation in Low-Income African American Youth.” Addictive Behaviors 89: 236–39.
Koban, Leonie, Ethan Kross, Choong-Wan Woo, Luka Ruzic, and Tor D Wager. 2017. “Frontal-Brainstem Pathways Mediating Placebo Effects on Social Rejection.” Journal of Neuroscience 37 (13): 3621–31.
Krause, Elizabeth D, Clorinda E Vélez, Rebecca Woo, Brittany Hoffmann, Derek R Freres, Rachel M Abenavoli, and Jane E Gillham. 2018. “Rumination, Depression, and Gender in Early Adolescence: A Longitudinal Study of a Bidirectional Model.” The Journal of Early Adolescence 38 (7): 923–46.
Kuhlman, Kate R, Elizabeth Antici, Ece Tan, Mai-Lan Tran, Emma L Rodgers-Romero, and Nazly Restrepo. 2023. “Predictors of Adolescent Resilience During the COVID-19 Pandemic in a Community Sample of Hispanic and Latinx Youth: Expressive Suppression and Social Support.” Research on Child and Adolescent Psychopathology 51 (5): 639–51.
Linke, Julia O, Caitlin Stavish, Nancy E Adleman, Joelle Sarlls, Kenneth E Towbin, Ellen Leibenluft, and Melissa A Brotman. 2020. “White Matter Microstructure in Youth with and at Risk for Bipolar Disorder.” Bipolar Disorders 22 (2): 163–73.
Malberg, Norka T. 2023. “The Monster Outside the Door: A Developmental-Psychoanalytic Exploration of the Impact of COVID-19 on the Lives of Children and Adolescents.” Psychoanalytic Psychology 40 (3): 172.
Martinez Jr, Robert R, Marisa E Marraccini, Steven E Knotek, Rebecca A Neshkes, and Juliana Vanderburg. 2022. “Effects of Dialectical Behavioral Therapy Skills Training for Emotional Problem Solving for Adolescents (DBT STEPS-a) Program of Rural Ninth-Grade Students.” School Mental Health 14 (1): 165–78.
McRae, Kateri, Soo Hyun Rhee, Justine M Gatt, Detre Godinez, Leanne M Williams, and James J Gross. 2017. “Genetic and Environmental Influences on Emotion Regulation: A Twin Study of Cognitive Reappraisal and Expressive Suppression.” Emotion 17 (5): 772.
Motsan, Shai, Karen Yirmiya, and Ruth Feldman. 2022. “Chronic Early Trauma Impairs Emotion Recognition and Executive Functions in Youth; Specifying Biobehavioral Precursors of Risk and Resilience.” Development and Psychopathology 34 (4): 1339–52.
Murphy, Lexa K, Alexandra H Bettis, Meredith A Gruhn, Cynthia A Gerhardt, Kathryn Vannatta, and Bruce E Compas. 2017. “Resilience in Adolescents with Cancer: Association of Coping with Positive and Negative Affect.” Journal of Developmental & Behavioral Pediatrics 38 (8): 646–53.
Noroña-Zhou, Amanda N, and Irene Tung. 2021. “Developmental Patterns of Emotion Regulation in Toddlerhood: Examining Predictors of Change and Long-Term Resilience.” Infant Mental Health Journal 42 (1): 5–20.
Priel, Avital, Maor Zeev-Wolf, Amir Djalovski, and Ruth Feldman. 2020. “Maternal Depression Impairs Child Emotion Understanding and Executive Functions: The Role of Dysregulated Maternal Care Across the First Decade of Life.” Emotion 20 (6): 1042.
Ramaiya, Megan K, Caitlin McLean, Upasana Regmi, Devika Fiorillo, Clive J Robins, and Brandon A Kohrt. 2018. “A Dialectical Behavior Therapy Skills Intervention for Women with Suicidal Behaviors in Rural Nepal: A Single-Case Experimental Design Series.” Journal of Clinical Psychology 74 (7): 1071–91.
Rich, Brendan A, Nina D Shiffrin, Colleen M Cummings, Melissa M Zarger, Lisa Berghorst, and Mary K Alvord. 2019. “Resilience-Based Intervention with Underserved Children: Impact on Self-Regulation in a Randomized Clinical Trial in Schools.” International Journal of Group Psychotherapy 69 (1): 30–53.
Rodman, Alexandra M, Jessica L Jenness, David G Weissman, Daniel S Pine, and Katie A McLaughlin. 2019. “Neurobiological Markers of Resilience to Depression Following Childhood Maltreatment: The Role of Neural Circuits Supporting the Cognitive Control of Emotion.” Biological Psychiatry 86 (6): 464–73.
Rudolph, Karen D, Wendy Troop-Gordon, Haley V Skymba, Haina H Modi, Zihua Ye, Rebekah B Clapham, Jillian Dodson, Megan Finnegan, and Wendy Heller. 2024. “Cultivating Emotional Resilience in Adolescent Girls: Effects of a Growth Emotion Mindset Lesson.” Child Development.
Schäfer, Johanna Özlem, Eva Naumann, Emily Alexandra Holmes, Brunna Tuschen-Caffier, and Andrea Christiane Samson. 2017. “Emotion Regulation Strategies in Depressive and Anxiety Symptoms in Youth: A Meta-Analytic Review.” Journal of Youth and Adolescence 46: 261–76.
Sendzik, Lena, Johanna Ö. Schäfer, Andrea C. Samson, Eva Naumann, and Brunna Tuschen-Caffier. 2017. “Emotional Awareness in Depressive and Anxiety Symptoms in Youth: A Meta-Analytic Review.” Journal of Youth and Adolescence 46: 687–700.
Sevinc, Gunes, Britta K Hölzel, Jonathan Greenberg, Tim Gard, Vincent Brunsch, Javeria A Hashmi, Mark Vangel, Scott P Orr, Mohammed R Milad, and Sara W Lazar. 2019. “Strengthened Hippocampal Circuits Underlie Enhanced Retrieval of Extinguished Fear Memories Following Mindfulness Training.” Biological Psychiatry 86 (9): 693–702.
Siciliano, Rachel E, Allegra S Anderson, Allison J Vreeland, Meredith A Gruhn, Lauren M Henry, Kelly H Watson, Qimin Liu, et al. 2023. “Physiology and Emotions: Within Individual Associations During Caregiver–Adolescent Conflict.” Psychophysiology 60 (12): e14397.
Skinner, Ellen A, Jennifer Pitzer Graham, Heather Brule, Nicolette Rickert, and Thomas A Kindermann. 2020. ‘I Get Knocked down but i Get up Again’: Integrative Frameworks for Studying the Development of Motivational Resilience in School.” International Journal of Behavioral Development 44 (4): 290–300.
Smith, Imari Z, and G Read Jen’nan. 2024. “Racial and Gender Differences in Discrimination and Psychological Distress Among Young Adults.” Social Science & Medicine 354: 117070.
Sui, Xincheng, Karlijn Massar, Loes TE Kessels, Priscilla S Reddy, Robert AC Ruiter, and Kathy Sanders-Phillips. 2020. “Exposure to Violence Across Multiple Contexts and Health Risk Behaviours in South African Adolescents: The Moderating Role of Emotion Dysregulation.” Psychology & Health 35 (2): 144–62.
Szoko, Nicholas, Namita Dwarakanath, Elizabeth Miller, Carla D Chugani, and Alison J Culyba. 2023. “Psychological Empowerment and Future Orientation Among Adolescents in a Youth Participatory Action Research Program.” Journal of Community Psychology 51 (5): 1851–59.
Tang, Yi-Yuan, Rongxiang Tang, and James J Gross. 2019. “Promoting Psychological Well-Being Through an Evidence-Based Mindfulness Training Program.” Frontiers in Human Neuroscience 13: 237.
Vannucci, Anna, Laura Finan, Christine McCauley Ohannessian, Howard Tennen, Andres De Los Reyes, and Songqi Liu. 2019. “Protective Factors Associated with Daily Affective Reactivity and Instability During Adolescence.” Journal of Youth and Adolescence 48: 771–87.
Vega-Torres, Julio D, Matine Azadian, Raul A Rios-Orsini, Arsenio L Reyes-Rivera, Perla Ontiveros-Angel, and Johnny D Figueroa. 2020. “Adolescent Vulnerability to Heightened Emotional Reactivity and Anxiety After Brief Exposure to an Obesogenic Diet.” Frontiers in Neuroscience 14: 562.
Weidacker, Kathrin, Seung-Goo Kim, Mette Buhl-Callesen, Mads Jensen, Mads Uffe Pedersen, Kristine Rømer Thomsen, and Valerie Voon. 2022. “The Prediction of Resilience to Alcohol Consumption in Youths: Insular and Subcallosal Cingulate Myeloarchitecture.” Psychological Medicine 52 (11): 2032–42.
White, Susan W, Laura Stoppelbein, Hunter Scott, and Debbie Spain. 2021. “It Took a Pandemic: Perspectives on Impact, Stress, and Telehealth from Caregivers of People with Autism.” Research in Developmental Disabilities 113: 103938.
Wu, Qiong, Natasha Slesnick, and Aaron Murnan. 2018. “Understanding Parenting Stress and Children’s Behavior Problems Among Homeless, Substance-Abusing Mothers.” Infant Mental Health Journal 39 (4): 423–31.
Wymbs, Nicholas F, Catherine Orr, Matthew D Albaugh, Robert R Althoff, Kerry O’Loughlin, Hannah Holbrook, Hugh Garavan, et al. 2020. “Social Supports Moderate the Effects of Child Adversity on Neural Correlates of Threat Processing.” Child Abuse & Neglect 102: 104413.
Xiao, Yuanyuan, Yeying Wang, Wei Chang, Ying Chen, Zhen Yu, and Harvey A Risch. 2019. “Factors Associated with Psychological Resilience in Left-Behind Children in Southwest China.” Asian Journal of Psychiatry 46: 1–5.