1 Cargar lo paquetes necesarios

#2 Cargar base de datos

df<-read.csv("Data/Sample - Superstore.csv")
head(df)
##   Row.ID       Order.ID Order.Date  Ship.Date      Ship.Mode Customer.ID
## 1      1 CA-2016-152156  11/8/2016 11/11/2016   Second Class    CG-12520
## 2      2 CA-2016-152156  11/8/2016 11/11/2016   Second Class    CG-12520
## 3      3 CA-2016-138688  6/12/2016  6/16/2016   Second Class    DV-13045
## 4      4 US-2015-108966 10/11/2015 10/18/2015 Standard Class    SO-20335
## 5      5 US-2015-108966 10/11/2015 10/18/2015 Standard Class    SO-20335
## 6      6 CA-2014-115812   6/9/2014  6/14/2014 Standard Class    BH-11710
##     Customer.Name   Segment       Country            City      State
## 1     Claire Gute  Consumer United States       Henderson   Kentucky
## 2     Claire Gute  Consumer United States       Henderson   Kentucky
## 3 Darrin Van Huff Corporate United States     Los Angeles California
## 4  Sean O'Donnell  Consumer United States Fort Lauderdale    Florida
## 5  Sean O'Donnell  Consumer United States Fort Lauderdale    Florida
## 6 Brosina Hoffman  Consumer United States     Los Angeles California
##   Postal.Code Region      Product.ID        Category Sub.Category
## 1       42420  South FUR-BO-10001798       Furniture    Bookcases
## 2       42420  South FUR-CH-10000454       Furniture       Chairs
## 3       90036   West OFF-LA-10000240 Office Supplies       Labels
## 4       33311  South FUR-TA-10000577       Furniture       Tables
## 5       33311  South OFF-ST-10000760 Office Supplies      Storage
## 6       90032   West FUR-FU-10001487       Furniture  Furnishings
##                                                       Product.Name    Sales
## 1                                Bush Somerset Collection Bookcase 261.9600
## 2      Hon Deluxe Fabric Upholstered Stacking Chairs, Rounded Back 731.9400
## 3        Self-Adhesive Address Labels for Typewriters by Universal  14.6200
## 4                    Bretford CR4500 Series Slim Rectangular Table 957.5775
## 5                                   Eldon Fold 'N Roll Cart System  22.3680
## 6 Eldon Expressions Wood and Plastic Desk Accessories, Cherry Wood  48.8600
##   Quantity Discount    Profit
## 1        2     0.00   41.9136
## 2        3     0.00  219.5820
## 3        2     0.00    6.8714
## 4        5     0.45 -383.0310
## 5        2     0.20    2.5164
## 6        7     0.00   14.1694

#3 Modificaciones de columnas

df_mod <- df %>% #Llamar a la base de datos
  filter(State == "Florida") %>% #ESTE ES EL PASO NUEVO
  select(Order.Date, Sales) %>% #Selecconamos dos columnas Order.Date y Sales
  mutate(Order.Date = mdy(Order.Date)) %>% #Cambiar a tipo fecha
  mutate(Fecha = floor_date(Order.Date, unit = "month")) %>% #Regresamos a inicio de mes 
  group_by(Fecha) %>% #Agrupa por mes 
  summarise(Ventas = sum(Sales)) %>% #Hacer la suma 
  mutate(Mes = seq_along(Fecha)) #Crear columna x para la regresion

head(df_mod)
## # A tibble: 6 × 3
##   Fecha       Ventas   Mes
##   <date>       <dbl> <int>
## 1 2014-01-01    25.2     1
## 2 2014-02-01   199.      2
## 3 2014-03-01 25883.      3
## 4 2014-04-01   737.      4
## 5 2014-05-01  1196.      5
## 6 2014-06-01    63.4     6

4 Visualizacion

df_mod %>%
  ggplot(., aes(x=Mes, y=Ventas)) +
  geom_point() +
  geom_line() + 
  geom_smooth(method = "lm", formula = "y ~ x")

5 Grafica de caja y bigotes

#Esta grafica me sirve para encontrar valores atipicos
df_mod %>%
  ggplot(., aes(x=Ventas)) + 
  geom_boxplot()

6 Revisar si la variable y tiene una distribucion aprox normal

df_mod %>%
  ggplot(., aes(x=Ventas)) + 
  geom_histogram(bins=30, aes(y=..density..)) +
  geom_density()
## Warning: The dot-dot notation (`..density..`) was deprecated in ggplot2 3.4.0.
## ℹ Please use `after_stat(density)` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

7 Analisis de correlacion

#Calculamos coeficiente de correlacion de pearson, con Mes como x 
with(df_mod, cor.test(Mes, Ventas))
## 
##  Pearson's product-moment correlation
## 
## data:  Mes and Ventas
## t = -0.46078, df = 44, p-value = 0.6472
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.3525050  0.2255369
## sample estimates:
##         cor 
## -0.06929832
#La correlacion va de -1 a1
# Valores externos indican correlacion mas fuerte
#Pueden ser positiva (suben o bajan juntas) o 
#Negativa ( si la otra sube la otra baja y viceversa)

8 Modelo de Regresion

modelo_lineal <- lm(Ventas ~ Mes, data = df_mod)
stargazer(modelo_lineal, type = "text")
## 
## ===============================================
##                         Dependent variable:    
##                     ---------------------------
##                               Ventas           
## -----------------------------------------------
## Mes                           -19.934          
##                              (43.261)          
##                                                
## Constant                    2,413.525**        
##                             (1,167.643)        
##                                                
## -----------------------------------------------
## Observations                    46             
## R2                             0.005           
## Adjusted R2                   -0.018           
## Residual Std. Error     3,895.282 (df = 44)    
## F Statistic             0.212 (df = 1; 44)     
## ===============================================
## Note:               *p<0.1; **p<0.05; ***p<0.01
#El modelo es y=a + bx
# Constant = a
#Pendiente = b 
#Mes = x

9 Coeficiente del modelo

#Obtener los coeficientes del modelo, es decir a y b 
coeficientes <- coef(modelo_lineal)
intercepto <- coeficientes ["(Intercept)"]
pendiente <- coeficientes["Mes"]

# Crear el texto de la ecuacion
ecuacion <- paste0("y =", round(intercepto, 2),
                   "+", round(pendiente, 2), "x")
ecuacion
## [1] "y =2413.52+-19.93x"

10 Prediccion

# Extender la serie temporal para 6 meses
df_futuro <- data.frame(Fecha = seq.Date(from = max(df_mod$Fecha)+ months(1),
                            by = "month", 
                            length.out = 6),
           Mes= seq(from = 49, to = 54, by= 1))
# Generar las predicciones para 6 meses con intervalos de confianza
predicciones <- predict(modelo_lineal,
                        newdata = df_futuro, 
                        interval = "confidence")
predicciones
##        fit       lwr      upr
## 1 1436.769 -1069.750 3943.289
## 2 1416.835 -1167.332 4001.002
## 3 1396.902 -1265.503 4059.306
## 4 1376.968 -1364.215 4118.151
## 5 1357.034 -1463.422 4177.490
## 6 1337.100 -1563.083 4237.283

11 Juntar los datos

# Convertir conversiones a un data frame
df_predicciones <- as.data.frame(predicciones)
colnames(df_predicciones) <- c("Ventas", "Bajo", "Alto")

#Unir las predicciones y los intervalos de confianza con las fechas 
df_futuro <- cbind(df_futuro, df_predicciones) # cbind une por columnas 

# Unir con la base de datos original
df_total <- bind_rows(df_mod, df_futuro)
tail(df_total, 7)
## # A tibble: 7 × 5
##   Fecha      Ventas   Mes   Bajo  Alto
##   <date>      <dbl> <dbl>  <dbl> <dbl>
## 1 2017-12-01  1183.    46    NA    NA 
## 2 2018-01-01  1437.    49 -1070. 3943.
## 3 2018-02-01  1417.    50 -1167. 4001.
## 4 2018-03-01  1397.    51 -1266. 4059.
## 5 2018-04-01  1377.    52 -1364. 4118.
## 6 2018-05-01  1357.    53 -1463. 4177.
## 7 2018-06-01  1337.    54 -1563. 4237.

12 Visualizacion

#Grafica  con valores pasados y prediccion
df_total %>%
  ggplot(., aes(x = Fecha, y = Ventas)) + 
  geom_point(dat = df_mod) + 
  geom_line(data = df_mod) +
  geom_smooth(method="lm", formula = y ~ x, color = "blue", 
              data = df_mod) + 
  geom_ribbon (data = df_futuro, aes(ymin = Bajo, ymax = Alto), 
               fill = "lightblue") + 
  geom_point(data = df_futuro, aes(y= Ventas), color= "red") + 
  geom_line(data = df_futuro, aes(y=Ventas, color= "red", 
                                  linetype = "dashed"))