Set up

library(tidyverse)
library(tidyquant) # for financial analysis
library(broom) # for tidy model results
library(umap)  # for dimension reduction
library(plotly) # for interactive visualization

Data

# Get info on companies listed in S&P500
sp500_index_tbl <- tq_index("SP500")

# Get individual stocks from S&P500
sp500_symbols <- sp500_index_tbl %>% distinct(symbol) %>% pull() 

# Get stock prices of the companies
sp500_prices_tbl <- tq_get(sp500_symbols, from = "2020-04-01")

write.csv(sp500_index_tbl, "../00_data/sp500_index_tbl.csv")
write.csv(sp500_prices_tbl, "../00_data/sp500_prices_tbl.csv")

Import data

sp500_index_tbl <- read_csv("../00_data/sp500_index_tbl.csv")
sp500_prices_tbl <- read_csv("../00_data/sp500_prices_tbl.csv")
sp500_index_tbl %>% glimpse()
## Rows: 505
## Columns: 9
## $ ...1           <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, …
## $ symbol         <chr> "MSFT", "AAPL", "NVDA", "AMZN", "META", "GOOGL", "BRK-B…
## $ company        <chr> "MICROSOFT CORP", "APPLE INC", "NVIDIA CORP", "AMAZON.C…
## $ identifier     <chr> "594918104", "037833100", "67066G104", "023135106", "30…
## $ sedol          <chr> "2588173", "2046251", "2379504", "2000019", "B7TL820", …
## $ weight         <dbl> 0.070781439, 0.056357717, 0.050531591, 0.037332751, 0.0…
## $ sector         <chr> "-", "-", "-", "-", "-", "-", "-", "-", "-", "-", "-", …
## $ shares_held    <dbl> 89663945, 175158625, 29805583, 110304496, 26548208, 711…
## $ local_currency <chr> "USD", "USD", "USD", "USD", "USD", "USD", "USD", "USD",…
sp500_prices_tbl %>% glimpse()
## Rows: 502,541
## Columns: 9
## $ ...1     <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18…
## $ symbol   <chr> "MSFT", "MSFT", "MSFT", "MSFT", "MSFT", "MSFT", "MSFT", "MSFT…
## $ date     <date> 2020-04-01, 2020-04-02, 2020-04-03, 2020-04-06, 2020-04-07, …
## $ open     <dbl> 153.00, 151.86, 155.10, 160.32, 169.59, 165.67, 166.36, 164.3…
## $ high     <dbl> 157.75, 155.48, 157.38, 166.50, 170.00, 166.67, 167.37, 165.5…
## $ low      <dbl> 150.82, 150.36, 152.19, 157.58, 163.26, 163.50, 163.33, 162.3…
## $ close    <dbl> 152.11, 155.26, 153.83, 165.27, 163.49, 165.13, 165.14, 165.5…
## $ volume   <dbl> 57969900, 49630700, 41243300, 67111700, 62769000, 48318200, 5…
## $ adjusted <dbl> 146.7080, 149.7461, 148.3670, 159.4007, 157.6839, 159.2657, 1…

Question

Which stock prices behave similarly?

Our main objective is to identify stocks that exhibit similar price behaviors over time. By doing so, we aim to gain insights into the relationships between different companies, uncovering potential competitors and sector affiliations.

Why It Matters Understanding which companies are related is crucial for various reasons:

Assignment Details Your task is to analyze the historical price data of various stocks and determine which stocks behave similarly. We will employ clustering techniques to accomplish this task effectively.

1 Convert data to standardized form

To compare data effectively, it must be standardized or normalized. Why? Because comparing values (like stock prices) of vastly different magnitudes is impractical. So, we’ll standardize by converting from adjusted stock price (in dollars) to daily returns (as percent change from the previous day). Here’s the formula:

\[ return_{daily} = \frac{price_{i}-price_{i-1}}{price_{i-1}} \]

sp500_prices_tbl %>% glimpse()
## Rows: 502,541
## Columns: 9
## $ ...1     <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18…
## $ symbol   <chr> "MSFT", "MSFT", "MSFT", "MSFT", "MSFT", "MSFT", "MSFT", "MSFT…
## $ date     <date> 2020-04-01, 2020-04-02, 2020-04-03, 2020-04-06, 2020-04-07, …
## $ open     <dbl> 153.00, 151.86, 155.10, 160.32, 169.59, 165.67, 166.36, 164.3…
## $ high     <dbl> 157.75, 155.48, 157.38, 166.50, 170.00, 166.67, 167.37, 165.5…
## $ low      <dbl> 150.82, 150.36, 152.19, 157.58, 163.26, 163.50, 163.33, 162.3…
## $ close    <dbl> 152.11, 155.26, 153.83, 165.27, 163.49, 165.13, 165.14, 165.5…
## $ volume   <dbl> 57969900, 49630700, 41243300, 67111700, 62769000, 48318200, 5…
## $ adjusted <dbl> 146.7080, 149.7461, 148.3670, 159.4007, 157.6839, 159.2657, 1…
# Apply your data transformation skills!
sp_500_daily_returns_tbl <- sp500_prices_tbl %>%
    
    select(symbol, date, adjusted) %>%
    
    filter(date >= ymd("2018-01-01")) %>%
    
    group_by(symbol) %>%
    mutate(lag_1 = lag(adjusted)) %>%
    ungroup() %>%
    
    filter(!is.na(lag_1)) %>%
    
    mutate(diff = adjusted - lag_1) %>%
    mutate(pct_return = diff / lag_1) %>%
    
    select(symbol, date, pct_return) 

sp_500_daily_returns_tbl
## # A tibble: 502,038 × 3
##    symbol date       pct_return
##    <chr>  <date>          <dbl>
##  1 MSFT   2020-04-02  0.0207   
##  2 MSFT   2020-04-03 -0.00921  
##  3 MSFT   2020-04-06  0.0744   
##  4 MSFT   2020-04-07 -0.0108   
##  5 MSFT   2020-04-08  0.0100   
##  6 MSFT   2020-04-09  0.0000605
##  7 MSFT   2020-04-13  0.00224  
##  8 MSFT   2020-04-14  0.0495   
##  9 MSFT   2020-04-15 -0.0105   
## 10 MSFT   2020-04-16  0.0300   
## # ℹ 502,028 more rows

2 Spread to object-characteristics format

We’ll convert the daily returns (percentage change from one day to the next) to object-characteristics format, also known as the user-item format. Users are identified by the symbol (company), and items are represented by the pct_return at each date.

stock_date_matrix_tbl <- sp_500_daily_returns_tbl %>%
    spread(key = date, value = pct_return, fill = 0)
    

stock_date_matrix_tbl
## # A tibble: 503 × 1,005
##    symbol `2020-04-02` `2020-04-03` `2020-04-06` `2020-04-07` `2020-04-08`
##    <chr>         <dbl>        <dbl>        <dbl>        <dbl>        <dbl>
##  1 A           0.0489     -0.0259         0.0559     -0.00444       0.0359
##  2 AAL        -0.0589     -0.0666         0.0117      0.0758        0.109 
##  3 AAPL        0.0167     -0.0144         0.0872     -0.0116        0.0256
##  4 ABBV        0.0233     -0.0234         0.0322     -0.00449       0.0420
##  5 ABNB        0           0              0           0             0     
##  6 ABT         0.0375      0.000126       0.0413     -0.00967       0.0369
##  7 ACGL        0.0115     -0.0650         0.0983      0.0314        0.0291
##  8 ACN         0.0103     -0.0264         0.0914     -0.0116        0.0464
##  9 ADBE        0.00913    -0.0341         0.0869     -0.0320        0.0267
## 10 ADI         0.0429     -0.0130         0.107       0.00470       0.0535
## # ℹ 493 more rows
## # ℹ 999 more variables: `2020-04-09` <dbl>, `2020-04-13` <dbl>,
## #   `2020-04-14` <dbl>, `2020-04-15` <dbl>, `2020-04-16` <dbl>,
## #   `2020-04-17` <dbl>, `2020-04-20` <dbl>, `2020-04-21` <dbl>,
## #   `2020-04-22` <dbl>, `2020-04-23` <dbl>, `2020-04-24` <dbl>,
## #   `2020-04-27` <dbl>, `2020-04-28` <dbl>, `2020-04-29` <dbl>,
## #   `2020-04-30` <dbl>, `2020-05-01` <dbl>, `2020-05-04` <dbl>, …

3 Perform k-means clustering

stock_date_cleaned <- stock_date_matrix_tbl[apply(stock_date_matrix_tbl!=0, 1, all),]

stock_date_cleaned
## # A tibble: 68 × 1,005
##    symbol `2020-04-02` `2020-04-03` `2020-04-06` `2020-04-07` `2020-04-08`
##    <chr>         <dbl>        <dbl>        <dbl>        <dbl>        <dbl>
##  1 ALGN       -0.0326       0.0140        0.146      -0.0124        0.0565
##  2 ALLE       -0.00201     -0.00450       0.124      -0.0184        0.0205
##  3 AMAT       -0.00139     -0.0222        0.0915      0.0306        0.0820
##  4 AMGN        0.0560      -0.0166        0.0300     -0.0132        0.0499
##  5 AMP        -0.00276     -0.0397        0.136       0.00877       0.0793
##  6 APD         0.0276      -0.0406        0.0389      0.0421        0.0680
##  7 AVGO        0.0601      -0.0118        0.0776      0.00329       0.0309
##  8 AXON       -0.0321      -0.0180        0.106       0.0141        0.0510
##  9 AXP        -0.00969     -0.0399        0.140       0.0442        0.0514
## 10 AZO         0.0229      -0.00515       0.107       0.0280        0.0173
## # ℹ 58 more rows
## # ℹ 999 more variables: `2020-04-09` <dbl>, `2020-04-13` <dbl>,
## #   `2020-04-14` <dbl>, `2020-04-15` <dbl>, `2020-04-16` <dbl>,
## #   `2020-04-17` <dbl>, `2020-04-20` <dbl>, `2020-04-21` <dbl>,
## #   `2020-04-22` <dbl>, `2020-04-23` <dbl>, `2020-04-24` <dbl>,
## #   `2020-04-27` <dbl>, `2020-04-28` <dbl>, `2020-04-29` <dbl>,
## #   `2020-04-30` <dbl>, `2020-05-01` <dbl>, `2020-05-04` <dbl>, …
stock_date_cluster <- kmeans(stock_date_cleaned %>% select(-symbol), centers = 3, nstart = 20)
summary(stock_date_cluster)
##              Length Class  Mode   
## cluster        68   -none- numeric
## centers      3012   -none- numeric
## totss           1   -none- numeric
## withinss        3   -none- numeric
## tot.withinss    1   -none- numeric
## betweenss       1   -none- numeric
## size            3   -none- numeric
## iter            1   -none- numeric
## ifault          1   -none- numeric
tidy(stock_date_cluster)
## # A tibble: 3 × 1,007
##   `2020-04-02` `2020-04-03` `2020-04-06` `2020-04-07` `2020-04-08` `2020-04-09`
##          <dbl>        <dbl>        <dbl>        <dbl>        <dbl>        <dbl>
## 1       0.0161      -0.0191       0.0913     0.0136         0.0449      0.0223 
## 2       0.0138      -0.0230       0.0786    -0.0117         0.0400      0.00959
## 3       0.0204      -0.0156       0.103     -0.000297       0.0433     -0.0114 
## # ℹ 1,001 more variables: `2020-04-13` <dbl>, `2020-04-14` <dbl>,
## #   `2020-04-15` <dbl>, `2020-04-16` <dbl>, `2020-04-17` <dbl>,
## #   `2020-04-20` <dbl>, `2020-04-21` <dbl>, `2020-04-22` <dbl>,
## #   `2020-04-23` <dbl>, `2020-04-24` <dbl>, `2020-04-27` <dbl>,
## #   `2020-04-28` <dbl>, `2020-04-29` <dbl>, `2020-04-30` <dbl>,
## #   `2020-05-01` <dbl>, `2020-05-04` <dbl>, `2020-05-05` <dbl>,
## #   `2020-05-06` <dbl>, `2020-05-07` <dbl>, `2020-05-08` <dbl>, …
glance(stock_date_cluster)
## # A tibble: 1 × 4
##   totss tot.withinss betweenss  iter
##   <dbl>        <dbl>     <dbl> <int>
## 1  21.4         17.9      3.55     3
augment(stock_date_cluster, stock_date_cleaned) 
## # A tibble: 68 × 1,006
##    symbol `2020-04-02` `2020-04-03` `2020-04-06` `2020-04-07` `2020-04-08`
##    <chr>         <dbl>        <dbl>        <dbl>        <dbl>        <dbl>
##  1 ALGN       -0.0326       0.0140        0.146      -0.0124        0.0565
##  2 ALLE       -0.00201     -0.00450       0.124      -0.0184        0.0205
##  3 AMAT       -0.00139     -0.0222        0.0915      0.0306        0.0820
##  4 AMGN        0.0560      -0.0166        0.0300     -0.0132        0.0499
##  5 AMP        -0.00276     -0.0397        0.136       0.00877       0.0793
##  6 APD         0.0276      -0.0406        0.0389      0.0421        0.0680
##  7 AVGO        0.0601      -0.0118        0.0776      0.00329       0.0309
##  8 AXON       -0.0321      -0.0180        0.106       0.0141        0.0510
##  9 AXP        -0.00969     -0.0399        0.140       0.0442        0.0514
## 10 AZO         0.0229      -0.00515       0.107       0.0280        0.0173
## # ℹ 58 more rows
## # ℹ 1,000 more variables: `2020-04-09` <dbl>, `2020-04-13` <dbl>,
## #   `2020-04-14` <dbl>, `2020-04-15` <dbl>, `2020-04-16` <dbl>,
## #   `2020-04-17` <dbl>, `2020-04-20` <dbl>, `2020-04-21` <dbl>,
## #   `2020-04-22` <dbl>, `2020-04-23` <dbl>, `2020-04-24` <dbl>,
## #   `2020-04-27` <dbl>, `2020-04-28` <dbl>, `2020-04-29` <dbl>,
## #   `2020-04-30` <dbl>, `2020-05-01` <dbl>, `2020-05-04` <dbl>, …
   #ggplot(aes('2020-04-02', pct_return, color = .cluster)) +
   # geom_point()

4 Select optimal number of clusters

kclusts <- tibble(k = 1:9) %>%
  mutate(kclust = map(.x = k, .f = ~ kmeans(stock_date_cleaned %>% 
        select(-symbol), centers = .x, nstart = 20)), glanced = map(.x = kclust, .f = glance))

kclusts %>%
  unnest(glanced) %>%
  ggplot(aes(k, tot.withinss)) +
  geom_point() +
  geom_line()

final_cluster <- kmeans(stock_date_cleaned %>% select(-symbol), centers = 5, nstart = 20)
#augment(stock_date_cluster, stock_date_cleaned) %>% 
  
  #ggplot(aes(x, y, color = .cluster)) +
  #geom_point()

5 Reduce dimension using UMAP

6 Visualize clusters by adding k-means results