# Load packages

# Core
library(tidyverse)
library(tidyquant)

# time series
library(timetk)

Goal

Simulate future portfolio returns

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”

market: “SPY”

from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AGG        0.25
## 2 EEM        0.25
## 3 EFA        0.2 
## 4 IJS        0.2 
## 5 SPY        0.1

4 Build a portfolio

# ?tq_portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 60 × 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31  0.0204 
##  2 2013-02-28 -0.00239
##  3 2013-03-28  0.0121 
##  4 2013-04-30  0.0174 
##  5 2013-05-31 -0.0128 
##  6 2013-06-28 -0.0247 
##  7 2013-07-31  0.0321 
##  8 2013-08-30 -0.0224 
##  9 2013-09-30  0.0511 
## 10 2013-10-31  0.0301 
## # ℹ 50 more rows

5 Simulating growth of a dollar

# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899135
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.02347492
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
##   [1]  0.0004703962  0.0223044578  0.0359622761  0.0296454070  0.0251913598
##   [6]  0.0032738729 -0.0023500391  0.0317613901  0.0172417372  0.0288948083
##  [11]  0.0223611980 -0.0055989888 -0.0161195314  0.0373404907  0.0019521409
##  [16] -0.0233933872  0.0303947141 -0.0093926140  0.0139751607  0.0221815892
##  [21]  0.0173640063  0.0432210702  0.0207843782 -0.0213136009 -0.0043956368
##  [26]  0.0599704446  0.0101275654  0.0106589566  0.0230386880  0.0400527250
##  [31]  0.0128826353  0.0293260979 -0.0355829163 -0.0459359748 -0.0085759070
##  [36] -0.0175234988  0.0060044834  0.0247170604 -0.0080387848  0.0349587260
##  [41] -0.0273396090  0.0139129421  0.0223638886  0.0133671104  0.0848988937
##  [46]  0.0449148621  0.0107817284  0.0246660968  0.0197261591  0.0253912545
##  [51] -0.0134099730  0.0323275298 -0.0324103857 -0.0259611450 -0.0165529942
##  [56]  0.0316256401  0.0100343652  0.0017302412  0.0264224494 -0.0211474438
##  [61]  0.0400365303 -0.0026130563 -0.0264516732 -0.0164377695 -0.0034434006
##  [66]  0.0146129700  0.0318773424 -0.0180145660  0.0067254754  0.0133389330
##  [71]  0.0315524983  0.0162708062 -0.0271474739  0.0556935815  0.0164109594
##  [76] -0.0122414381  0.0354492216 -0.0444352901 -0.0152136182 -0.0546049080
##  [81]  0.0080219807  0.0011254042  0.0184085923 -0.0067006604 -0.0128067030
##  [86]  0.0105049720  0.0518120983  0.0083955631  0.0161482607 -0.0008457486
##  [91]  0.0352836551  0.0279864785 -0.0048972780 -0.0057485722 -0.0250402126
##  [96]  0.0524136497  0.0373606937  0.0094287117 -0.0192919781  0.0033678545
## [101]  0.0324004920 -0.0131083305  0.0205948124  0.0676164052  0.0036707424
## [106]  0.0190482827  0.0101238689 -0.0321524409  0.0070974904 -0.0227764547
## [111] -0.0255152146  0.0588043949 -0.0402389268  0.0032425451  0.0406766697
## [116]  0.0219606600  0.0215549800  0.0051557545  0.0227308694  0.0529309861
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 × 1
##    returns
##      <dbl>
##  1   1    
##  2   1.00 
##  3   1.02 
##  4   1.04 
##  5   1.03 
##  6   1.03 
##  7   1.00 
##  8   0.998
##  9   1.03 
## 10   1.02 
## # ℹ 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
    mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
    select(growth)

simulated_growth
## # A tibble: 121 × 1
##    growth
##     <dbl>
##  1   1   
##  2   1.00
##  3   1.02
##  4   1.06
##  5   1.09
##  6   1.12
##  7   1.12
##  8   1.12
##  9   1.16
## 10   1.17
## # ℹ 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 12.05848

6 Simulation function

simulate_accumulation <- function(initial_value, N, mean_return, sd_return) {
    
    # Construct a normal distribution
    simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
    
    # Add a dollar
    simulated_returns_add_1 <- tibble(returns = c(initial_value, 1 + rnorm(N, mean_return, sd_return)))
    
    # Calculate the cumulative growth of a dollar
    simulated_growth <- simulated_returns_add_1 %>%
        mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
        select(growth)
    
    return(simulated_growth)
}

simulate_accumulation(initial_value = 100, N = 240, mean_return = 0.005, sd_return = 0.01) %>% tail() 
## # A tibble: 6 × 1
##   growth
##    <dbl>
## 1   270.
## 2   271.
## 3   276.
## 4   277.
## 5   276.
## 6   277.
dump(list = c("simulate_accumulation"), 
     file = "../00_scripts/simulate_accumulation.R")

7 Running multiple simulations

# Create a vector of 1s as a starting point
sims <- 100
starts <- rep(1, sims) %>% 
    set_names(paste0("sim", 1:sims))

starts
##   sim1   sim2   sim3   sim4   sim5   sim6   sim7   sim8   sim9  sim10  sim11 
##      1      1      1      1      1      1      1      1      1      1      1 
##  sim12  sim13  sim14  sim15  sim16  sim17  sim18  sim19  sim20  sim21  sim22 
##      1      1      1      1      1      1      1      1      1      1      1 
##  sim23  sim24  sim25  sim26  sim27  sim28  sim29  sim30  sim31  sim32  sim33 
##      1      1      1      1      1      1      1      1      1      1      1 
##  sim34  sim35  sim36  sim37  sim38  sim39  sim40  sim41  sim42  sim43  sim44 
##      1      1      1      1      1      1      1      1      1      1      1 
##  sim45  sim46  sim47  sim48  sim49  sim50  sim51  sim52  sim53  sim54  sim55 
##      1      1      1      1      1      1      1      1      1      1      1 
##  sim56  sim57  sim58  sim59  sim60  sim61  sim62  sim63  sim64  sim65  sim66 
##      1      1      1      1      1      1      1      1      1      1      1 
##  sim67  sim68  sim69  sim70  sim71  sim72  sim73  sim74  sim75  sim76  sim77 
##      1      1      1      1      1      1      1      1      1      1      1 
##  sim78  sim79  sim80  sim81  sim82  sim83  sim84  sim85  sim86  sim87  sim88 
##      1      1      1      1      1      1      1      1      1      1      1 
##  sim89  sim90  sim91  sim92  sim93  sim94  sim95  sim96  sim97  sim98  sim99 
##      1      1      1      1      1      1      1      1      1      1      1 
## sim100 
##      1
# Simulate 
# For reproducable research
set.seed(1234)
monte_carlo_sim_51 <- starts %>% 
    
    # Simulate
    map_dfc(.x = ., 
            .f = ~simulate_accumulation(initial_value = .x, 
                                        N             = 120, 
                                        mean_return   = mean_port_return, 
                                        sd_return     = stddev_port_return)) %>% 
    
    # Add column month
    mutate(month = 1:nrow(.)) %>% 
    select(month, everything()) %>% 
    
    # Rearrange column names 
    set_names(c("month", names(starts))) %>% 
    
    # Transform to long form 
    pivot_longer(cols = -month, names_to = "sim", values_to = "growth")

monte_carlo_sim_51
## # A tibble: 12,100 × 3
##    month sim   growth
##    <int> <chr>  <dbl>
##  1     1 sim1       1
##  2     1 sim2       1
##  3     1 sim3       1
##  4     1 sim4       1
##  5     1 sim5       1
##  6     1 sim6       1
##  7     1 sim7       1
##  8     1 sim8       1
##  9     1 sim9       1
## 10     1 sim10      1
## # ℹ 12,090 more rows
# Find quantiles
monte_carlo_sim_51 %>% 
    
    group_by(sim) %>% 
    summarise(growth = last(growth)) %>%
    ungroup() %>% 
    pull(growth) %>%
    
    quantile(probs = c(0, 0.25, 0.5, 0.75, 1)) %>%
    round(2)
##   0%  25%  50%  75% 100% 
## 0.79 1.55 1.94 2.22 4.07

8 Visualizing simulations with ggplot

monte_carlo_sim_51 %>% 
    
    ggplot(aes(x = month, y = growth, color = sim)) + 
    geom_line() + 
    theme(legend.position = "none") + 
    theme(plot.title = element_text(hjust = 0.5)) +
    
    labs(title = "Simulating growth of $1 over 120 months")

Line plot with max, median, and min

# Step 1 Summarise data into max, median, and min of last value
sim_summary <- monte_carlo_sim_51 %>% 
    
    group_by(sim) %>% 
    summarise(growth = last(growth)) %>%
    ungroup() %>% 
    
    summarise(max    = max(growth), 
              median = median(growth),
              min    = min(growth))

sim_summary
## # A tibble: 1 × 3
##     max median   min
##   <dbl>  <dbl> <dbl>
## 1  4.07   1.94 0.785
# Step 2 Plot
monte_carlo_sim_51 %>% 
    
    # Filter for max, median and min sim
    group_by(sim) %>% 
    filter(last(growth) == sim_summary$max |
               last(growth) == sim_summary$median | 
               last(growth) == sim_summary$min) %>% 
    
ungroup() %>% 
    
    # Plot
    ggplot(aes(x = month, y = growth, color = sim)) + 
    geom_line() + 
    theme(legend.position = "none") + 
    theme(plot.title = element_text(hjust = 0.5)) + 
    theme(plot.subtitle = element_text(hjust = 0.5))+
    
    labs(title = "Simulating growth of $1 over 120 months", 
         subtitle = "Max, Median, and Minimum Simulation")

I am not sure why but for some reason the median line is not showing up on the gg plot however everything else is the same as in the video.