# Load packages
# Core
library(tidyverse)
library(tidyquant)
# time series
library(timetk)
Simulate future portfolio returns
five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”
market: “SPY”
from 2012-12-31 to 2017-12-31
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AGG 0.25
## 2 EEM 0.25
## 3 EFA 0.2
## 4 IJS 0.2
## 5 SPY 0.1
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0204
## 2 2013-02-28 -0.00239
## 3 2013-03-28 0.0121
## 4 2013-04-30 0.0174
## 5 2013-05-31 -0.0128
## 6 2013-06-28 -0.0247
## 7 2013-07-31 0.0321
## 8 2013-08-30 -0.0224
## 9 2013-09-30 0.0511
## 10 2013-10-31 0.0301
## # ℹ 50 more rows
# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899135
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.02347491
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
## [1] 0.0105639005 0.0642672722 0.0257051535 -0.0322562255 0.0224996412
## [6] -0.0157371950 0.0359197883 -0.0146354607 0.0236027233 0.0200853452
## [11] -0.0107793632 0.0062367759 0.0053262417 0.0688649918 0.0220070507
## [16] 0.0174702871 -0.0057010677 -0.0113227225 -0.0083174843 -0.0138864167
## [21] -0.0066147333 0.0276505976 0.0117144287 0.0319919310 -0.0349311749
## [26] 0.0111100557 0.0086158592 0.0001240984 0.0069915312 0.0237066536
## [31] 0.0211535929 -0.0133541709 0.0221903744 0.0122473251 0.0279646277
## [36] 0.0033181666 0.0028015426 0.0389794839 0.0089077939 0.0364189371
## [41] 0.0259339125 0.0105008317 -0.0054426267 -0.0346961143 -0.0221670011
## [46] 0.0180720846 0.0015881928 -0.0075263047 0.0214035412 -0.0076223709
## [51] 0.0033456951 0.0026498473 -0.0010708633 0.0193660469 0.0015823760
## [56] -0.0023525848 0.0396653513 0.0099986183 0.0629702057 0.0191645537
## [61] -0.0041769701 0.0344659705 -0.0163449723 0.0459335296 0.0033798486
## [66] -0.0441871811 -0.0177868090 -0.0228193365 -0.0327001121 -0.0022141465
## [71] -0.0381520009 -0.0408642670 0.0529943222 0.0067879314 0.0216864233
## [76] 0.0257592569 0.0556457435 0.0105999157 -0.0054328234 0.0138848900
## [81] -0.0269481016 0.0547419919 -0.0055053706 0.0209222098 0.0028937404
## [86] -0.0398192633 0.0164157433 -0.0119975890 0.0139576987 0.0345772668
## [91] 0.0124263376 0.0114859239 -0.0043402822 0.0074274832 -0.0266831016
## [96] -0.0057610495 0.0192747405 -0.0013709778 -0.0160256107 0.0057585645
## [101] 0.0070230121 0.0060355499 0.0080116822 -0.0141230053 0.0202744745
## [106] 0.0681215064 -0.0038386021 0.0017863528 0.0250766822 -0.0078962695
## [111] -0.0145991075 -0.0061194536 0.0201879501 0.0178836899 0.0255051384
## [116] 0.0213993961 0.0432075052 0.0278749673 0.0016616864 -0.0138573367
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 × 1
## returns
## <dbl>
## 1 1
## 2 1.01
## 3 1.06
## 4 1.03
## 5 0.968
## 6 1.02
## 7 0.984
## 8 1.04
## 9 0.985
## 10 1.02
## # ℹ 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
select(growth)
simulated_growth
## # A tibble: 121 × 1
## growth
## <dbl>
## 1 1
## 2 1.01
## 3 1.08
## 4 1.10
## 5 1.07
## 6 1.09
## 7 1.07
## 8 1.11
## 9 1.10
## 10 1.12
## # ℹ 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 9.5503
simulate_accumulation <- function(initial_value, N, mean_return, sd_return) {
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(initial_value, 1 + rnorm(N, mean_return, sd_return)))
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
select(growth)
return(simulated_growth)
}
simulate_accumulation(initial_value = 100, N = 240, mean_return = 0.005, sd_return = 0.01) %>%
tail()
## # A tibble: 6 × 1
## growth
## <dbl>
## 1 290.
## 2 292.
## 3 292.
## 4 290.
## 5 289.
## 6 295.
# Create a vector of 1s as a starting point
sims <- 51
starts <- rep(1, sims) %>%
set_names(paste0("sim", 1:sims))
starts
## sim1 sim2 sim3 sim4 sim5 sim6 sim7 sim8 sim9 sim10 sim11 sim12 sim13
## 1 1 1 1 1 1 1 1 1 1 1 1 1
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26
## 1 1 1 1 1 1 1 1 1 1 1 1 1
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39
## 1 1 1 1 1 1 1 1 1 1 1 1 1
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51
## 1 1 1 1 1 1 1 1 1 1 1 1
# Simulate
# for reproducible research
set.seed(1234)
monte_carle_sim_51 <- starts %>%
# Simulate
map_dfc(.x = .,
.f = ~simulate_accumulation(initial_value = .x,
N = 120,
mean_return = mean_port_return,
sd_return = stddev_port_return)) %>%
# Add column month
mutate(month = 1:nrow(.)) %>%
select(month, everything()) %>%
# Rearrange column names
set_names(c("month", names(starts))) %>%
# Transform to long form
pivot_longer(cols = -month, names_to = "sim", values_to = "growth")
# Find quantiles
monte_carle_sim_51 %>%
group_by(sim) %>%
summarise(growth = last(growth)) %>%
ungroup() %>%
pull(growth) %>%
quantile(probs = c(0, 0.25, 0.5, 0.75, 1)) %>%
round(2)
## 0% 25% 50% 75% 100%
## 1.17 1.59 1.98 2.40 3.88
monte_carle_sim_51 %>%
ggplot(aes(x = month, y = growth, color = sim)) +
geom_line() +
theme(legend.position = "none") +
theme(plot.title = element_text(hjust = 0.5)) +
labs(title = "Simulating Growth of $1 over 120 months")
# Step 1 Summarize data into max, median, and min of last value
sim_summary <- monte_carle_sim_51 %>%
group_by(sim) %>%
summarise(growth = last(growth)) %>%
ungroup() %>%
summarise(max = max(growth),
median = median(growth),
min = min(growth))
sim_summary
## # A tibble: 1 × 3
## max median min
## <dbl> <dbl> <dbl>
## 1 3.88 1.98 1.17
# Step 2 Plot
monte_carle_sim_51 %>%
# Filter for max, median, min sim
group_by(sim) %>%
filter(last(growth) == sim_summary$max |
last(growth) == sim_summary$median |
last(growth) == sim_summary$min) %>%
ungroup() %>%
# Plot
ggplot(aes(x = month, y = growth, color = sim)) +
geom_line() +
theme(legend.position = "none") +
theme(plot.title = element_text(hjust = 0.5)) +
theme(plot.subtitle = element_text(hjust = 0.5)) +
labs(title = "Simulating Growth of $1 over 120 months",
subtitle = "Maximum, Median, and Mimimum Simulation")