# Load packages

# Core
library(tidyverse)
library(tidyquant)

# time series
library(timetk)

Goal

Simulate future portfolio returns

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”

market: “SPY”

from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AGG        0.25
## 2 EEM        0.25
## 3 EFA        0.2 
## 4 IJS        0.2 
## 5 SPY        0.1

4 Build a portfolio

# ?tq_portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 60 × 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31  0.0204 
##  2 2013-02-28 -0.00239
##  3 2013-03-28  0.0121 
##  4 2013-04-30  0.0174 
##  5 2013-05-31 -0.0128 
##  6 2013-06-28 -0.0247 
##  7 2013-07-31  0.0321 
##  8 2013-08-30 -0.0224 
##  9 2013-09-30  0.0511 
## 10 2013-10-31  0.0301 
## # ℹ 50 more rows

5 Simulating growth of a dollar

# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899135
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.02347491
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
##   [1]  0.0105639005  0.0642672722  0.0257051535 -0.0322562255  0.0224996412
##   [6] -0.0157371950  0.0359197883 -0.0146354607  0.0236027233  0.0200853452
##  [11] -0.0107793632  0.0062367759  0.0053262417  0.0688649918  0.0220070507
##  [16]  0.0174702871 -0.0057010677 -0.0113227225 -0.0083174843 -0.0138864167
##  [21] -0.0066147333  0.0276505976  0.0117144287  0.0319919310 -0.0349311749
##  [26]  0.0111100557  0.0086158592  0.0001240984  0.0069915312  0.0237066536
##  [31]  0.0211535929 -0.0133541709  0.0221903744  0.0122473251  0.0279646277
##  [36]  0.0033181666  0.0028015426  0.0389794839  0.0089077939  0.0364189371
##  [41]  0.0259339125  0.0105008317 -0.0054426267 -0.0346961143 -0.0221670011
##  [46]  0.0180720846  0.0015881928 -0.0075263047  0.0214035412 -0.0076223709
##  [51]  0.0033456951  0.0026498473 -0.0010708633  0.0193660469  0.0015823760
##  [56] -0.0023525848  0.0396653513  0.0099986183  0.0629702057  0.0191645537
##  [61] -0.0041769701  0.0344659705 -0.0163449723  0.0459335296  0.0033798486
##  [66] -0.0441871811 -0.0177868090 -0.0228193365 -0.0327001121 -0.0022141465
##  [71] -0.0381520009 -0.0408642670  0.0529943222  0.0067879314  0.0216864233
##  [76]  0.0257592569  0.0556457435  0.0105999157 -0.0054328234  0.0138848900
##  [81] -0.0269481016  0.0547419919 -0.0055053706  0.0209222098  0.0028937404
##  [86] -0.0398192633  0.0164157433 -0.0119975890  0.0139576987  0.0345772668
##  [91]  0.0124263376  0.0114859239 -0.0043402822  0.0074274832 -0.0266831016
##  [96] -0.0057610495  0.0192747405 -0.0013709778 -0.0160256107  0.0057585645
## [101]  0.0070230121  0.0060355499  0.0080116822 -0.0141230053  0.0202744745
## [106]  0.0681215064 -0.0038386021  0.0017863528  0.0250766822 -0.0078962695
## [111] -0.0145991075 -0.0061194536  0.0201879501  0.0178836899  0.0255051384
## [116]  0.0213993961  0.0432075052  0.0278749673  0.0016616864 -0.0138573367
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 × 1
##    returns
##      <dbl>
##  1   1    
##  2   1.01 
##  3   1.06 
##  4   1.03 
##  5   0.968
##  6   1.02 
##  7   0.984
##  8   1.04 
##  9   0.985
## 10   1.02 
## # ℹ 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
    mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
    select(growth)

simulated_growth
## # A tibble: 121 × 1
##    growth
##     <dbl>
##  1   1   
##  2   1.01
##  3   1.08
##  4   1.10
##  5   1.07
##  6   1.09
##  7   1.07
##  8   1.11
##  9   1.10
## 10   1.12
## # ℹ 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 9.5503

6 Simulation function

simulate_accumulation <- function(initial_value, N, mean_return, sd_return) {
    
    # Add a dollar
    simulated_returns_add_1 <- tibble(returns = c(initial_value, 1 + rnorm(N, mean_return, sd_return)))
    
    # Calculate the cumulative growth of a dollar
    simulated_growth <- simulated_returns_add_1 %>%
        mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
        select(growth)
    
    return(simulated_growth)
    
}

simulate_accumulation(initial_value = 100, N = 240, mean_return = 0.005, sd_return = 0.01) %>%
    tail()
## # A tibble: 6 × 1
##   growth
##    <dbl>
## 1   290.
## 2   292.
## 3   292.
## 4   290.
## 5   289.
## 6   295.

7 Running multiple simulations

# Create a vector of 1s as a starting point
sims <- 51
starts <- rep(1, sims) %>%
    set_names(paste0("sim", 1:sims))

starts
##  sim1  sim2  sim3  sim4  sim5  sim6  sim7  sim8  sim9 sim10 sim11 sim12 sim13 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51 
##     1     1     1     1     1     1     1     1     1     1     1     1
# Simulate
# for reproducible research
set.seed(1234)

monte_carle_sim_51 <- starts %>%
    
    # Simulate
    map_dfc(.x = ., 
            .f = ~simulate_accumulation(initial_value = .x, 
                                       N              = 120, 
                                       mean_return    = mean_port_return,
                                       sd_return      = stddev_port_return)) %>%
    
    # Add column month
    mutate(month = 1:nrow(.)) %>%
    select(month, everything()) %>%
    
    # Rearrange column names
    set_names(c("month", names(starts))) %>%
    
    # Transform to long form
    pivot_longer(cols = -month, names_to = "sim", values_to = "growth")

# Find quantiles 
monte_carle_sim_51 %>%
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    pull(growth) %>%
    
    quantile(probs = c(0, 0.25, 0.5, 0.75, 1)) %>%
    round(2)
##   0%  25%  50%  75% 100% 
## 1.17 1.59 1.98 2.40 3.88

8 Visualizing simulations with ggplot

monte_carle_sim_51 %>%
    
    ggplot(aes(x = month, y = growth, color = sim)) +
    geom_line() + 
    theme(legend.position = "none") +
    theme(plot.title = element_text(hjust = 0.5)) +

    labs(title = "Simulating Growth of $1 over 120 months")

# Step 1 Summarize data into max, median, and min of last value
sim_summary <- monte_carle_sim_51 %>%
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%

    summarise(max    = max(growth), 
              median = median(growth), 
              min    = min(growth)) 

sim_summary
## # A tibble: 1 × 3
##     max median   min
##   <dbl>  <dbl> <dbl>
## 1  3.88   1.98  1.17
# Step 2 Plot
monte_carle_sim_51 %>%
    
    # Filter for max, median, min sim
    group_by(sim) %>%
    filter(last(growth) == sim_summary$max | 
               last(growth) == sim_summary$median | 
               last(growth) == sim_summary$min) %>%
    ungroup() %>%
    
    # Plot
        ggplot(aes(x = month, y = growth, color = sim)) +
    geom_line() + 
    theme(legend.position = "none") +
    theme(plot.title = element_text(hjust = 0.5)) +
    theme(plot.subtitle = element_text(hjust = 0.5)) +

    labs(title = "Simulating Growth of $1 over 120 months", 
         subtitle = "Maximum, Median, and Mimimum Simulation")