Here is my portfolio of RStudio projects completed in my fall semester of 2024. In my Election Statistics class I learned quite a lot about the program and how to use it. Skills like programming, organizing, and most of all, debugging are incredibly valuable and here is a testament to that.
The formatting of this project will be as follows. An introductory text explaining what will be shown, then the summarized output of the code, and finally, I will showcase the code I used to achieve the desired output.
Here is a graph showing the Gross Rent as a Percentage of Household Income (GRAPI) of 5 districts in Murfreesboro. The purpose of this graph is to showcase how many people in the city cannot afford rent as it exceeds the 30% of household income.
# Installing and loading required packages
if (!require("tidyverse"))
install.packages("tidyverse")
if (!require("tidycensus"))
install.packages("tidycensus")
if (!require("sf"))
install.packages("sf")
if (!require("mapview"))
install.packages("mapview")
if (!require("gtExtras"))
install.packages("gtExtras")
library(tidyverse)
library(tidycensus)
library(sf)
library(mapview)
library(gtExtras)
# Transmitting API key
census_api_key("b2e8a23fc464f596c54a776db4b502ad30cde5ca")
# Fetching ACS codebooks
DetailedTables <- load_variables(2022, "acs5", cache = TRUE)
SubjectTables <- load_variables(2022, "acs5/subject", cache = TRUE)
ProfileTables <- load_variables(2022, "acs5/profile", cache = TRUE)
Codebook <- DetailedTables %>%
select(name, label, concept)
Codebook <- bind_rows(Codebook,SubjectTables)
Codebook <- bind_rows(Codebook,ProfileTables)
Codebook <- Codebook %>%
distinct(label, .keep_all = TRUE)
rm(DetailedTables,
SubjectTables,
ProfileTables)
# Filtering the codebook
MyVars <- Codebook %>%
filter(grepl("GRAPI", label) &
grepl("Percent!!", label))
# Making a table of the filtered variables
MyVarsTable <- gt(MyVars) %>%
tab_header("Variables") %>%
cols_align(align = "left") %>%
gt_theme_538
# Displaying the table
MyVarsTable
# Defining the variable to retrieve
VariableList =
c(Estimate_ = "DP04_0142P")
# Fetching data
AllData <- get_acs(
geography = "state legislative district (lower chamber)",
state = "TN",
variables = VariableList,
year = 2022,
survey = "acs5",
output = "wide",
geometry = TRUE
)
# Mutating, selecting and sorting the data
AllData <- AllData %>%
mutate(
District = NAME,
Estimate = Estimate_E,
Estimate_MOE = Estimate_M,
From = round(Estimate - Estimate_MOE, 2),
To = round(Estimate + Estimate_MOE, 2)
) %>%
select(District, Estimate, Estimate_MOE, From, To, geometry) %>%
arrange(desc(Estimate))
# Filtering for Rutherford County districts
MyData <- AllData %>%
filter(
District == "State House District 13 (2022), Tennessee" |
District == "State House District 37 (2022), Tennessee" |
District == "State House District 49 (2022), Tennessee" |
District == "State House District 48 (2022), Tennessee" |
District == "State House District 34 (2022), Tennessee"
)
# Producing a map
MapData <- st_as_sf(MyData)
MyMap <- mapview(MapData,
zcol = "Estimate",
layer.name = "Estimate",
popup = TRUE)
#Displaying the map
MyMap
# Producing a table
TableData <- st_drop_geometry(MapData)
MyTable <- gt(TableData) %>%
tab_header("Estimate by district") %>%
cols_align(align = "left") %>%
gt_theme_538
# Displaying the table
MyTable
This graph shows the 2022 Gubernatorial Race between incumbent Republican Bill Lee and his democratic opponent, Jason Martin. The information shown by this graph shows that Lee greatly defeated Martin, specifically in areas whose population was not concentrated (Downtown Murfreesbooro and La Vergne / Smyrna area)
# Required packages
if (!require("tidyverse"))
install.packages("tidyverse")
if (!require("mapview"))
install.packages("mapview")
if (!require("sf"))
install.packages("sf")
if (!require("leaflet"))
install.packages("leaflet")
if (!require("leaflet.extras2"))
install.packages("leaflet.extras2")
if (!require("plotly"))
install.packages("plotly")
library(tidyverse)
library(mapview)
library(sf)
library(leaflet)
library(leafpop)
library(readxl)
library(plotly)
# Download and import election data
# from TN Secretary of State web site:
# https://sos.tn.gov/elections/results
download.file(
"https://sos-prod.tnsosgovfiles.com/s3fs-public/document/20221108AllbyPrecinct.xlsx",
"RawElectionData.xlsx",
quiet = TRUE,
mode = "wb"
)
RawElectionData <- read_xlsx("RawElectionData.xlsx", sheet = "SOFFICELso")
# Filter, calculate, and select
# to get data of interest
# then store results in MyData dataframe
MyData <- RawElectionData %>%
filter(COUNTY == "Rutherford", CANDGROUP == "1") %>%
mutate(
Lee = PVTALLY1,
Martin = PVTALLY2,
Total = PVTALLY1 + PVTALLY2,
Lee_Pct = round(PVTALLY1 / (PVTALLY1 + PVTALLY2), 2),
Martin_Pct = round(PVTALLY2 / (PVTALLY1 + PVTALLY2), 2),
Winner = case_when(
PVTALLY1 > PVTALLY2 ~ "Lee (R)",
PVTALLY2 > PVTALLY1 ~ "Martin (D)",
.default = "Tie"
)
) %>%
select(COUNTY, PRECINCT, Total, Lee, Martin, Lee_Pct, Martin_Pct, Winner)
# Download and unzip a precinct map to pair with the vote data
download.file("https://github.com/drkblake/Data/raw/main/Voting_Precincts_5_31_24.zip","TNVotingPrecincts.zip")
unzip("TNVotingPrecincts.zip")
All_Precincts <- read_sf("Voting_Precincts_5_31_24.shp")
# Filter for particular county precincts
County_Precincts <- All_Precincts %>%
filter(COUNTY == 149) %>%
rename(PRECINCT = NEWVOTINGP)
# Merge election data and map file
MergeFile <- merge(MyData, County_Precincts, by = "PRECINCT", all.x = TRUE)
# Drop unneeded columns from MergeFile
MergeFile <- MergeFile %>%
select(PRECINCT,
Total,
Lee,
Martin,
Lee_Pct,
Martin_Pct,
Winner,
geometry)
# Format MergeFile as a map, and
# call the map GuberMap
GuberMapFile <- st_as_sf(MergeFile)
mypalette = colorRampPalette(c('blue', 'red'))
GuberMap <- mapview(
GuberMapFile,
zcol = "Lee_Pct",
col.regions = mypalette, at = seq(0, 1, .2),
map.types = ("OpenStreetMap"),
layer.name = "Pct. for Lee",
popup = popupTable(
GuberMapFile,
feature.id = FALSE,
row.numbers = FALSE,
zcol = c(
"PRECINCT",
"Lee",
"Martin",
"Total",
"Lee_Pct",
"Martin_Pct",
"Winner"
)
)
)
# Showing the map
GuberMap
This map shows 9 separate early voting locations marked in orange with interactive information that is important to those looking into entering an early ballot. Additionally, MTSU campus is marked in blue.
# Required packages
if (!require("tidyverse"))
install.packages("tidyverse")
if (!require("sf"))
install.packages("sf")
if (!require("mapview"))
install.packages("mapview")
if (!require("leaflet"))
install.packages("leaflet")
if (!require("leaflet.extras2"))
install.packages("leaflet.extras2")
library(tidyverse)
library(sf)
library(mapview)
library(leaflet)
library(leaflet.extras2)
library(leafpop)
mapviewOptions(basemaps.color.shuffle = FALSE)
# Load the address and lat/long data
Addresses_gc <- read_csv(
"https://raw.githubusercontent.com/drkblake/Data/refs/heads/main/EarlyVotingLocations_gc.csv"
)
# Add MTSU
long <- -86.361861
lat <- 35.848997
Addresses_gc <- Addresses_gc %>%
add_row(Location = "MTSU",
long = long,
lat = lat) %>%
mutate(Point = case_when(Location == "MTSU" ~ "MTSU",
TRUE ~ "Early vote here"))
MapData <- st_as_sf(Addresses_gc,
coords = c("long", "lat"),
crs = 4326)
# Make the map
EarlyVotingMap <- mapview(MapData,
zcol = "Point",
layer.name = "Point",
col.regions = c("orange", "blue"),
map.types = c("OpenStreetMap","Esri.WorldImagery"),
popup = popupTable(
MapData,
feature.id = FALSE,
row.numbers = FALSE,
zcol = c("Location",
"Address",
"Week",
"Weekend")))
# Show the map
EarlyVotingMap
This graph shows two weeks (save for Sunday) of early voting in Murfreesboro as of October 31, 2024. At first glance, one can see the trends and behaviors of early voters.
if (!require("tidyverse"))
install.packages("tidyverse")
if (!require("foreign"))
install.packages("foreign")
if (!require("sf"))
install.packages("sf")
if (!require("scales"))
install.packages("scales")
if (!require("mapview"))
install.packages("mapview")
if (!require("leaflet"))
install.packages("leaflet")
if (!require("leaflet.extras2"))
install.packages("leaflet.extras2")
library(tidyverse)
library(foreign)
library(sf)
library(scales)
library(mapview)
library(leaflet)
library(leafpop)
# Fetch and unzip the early voting files
download.file("https://github.com/drkblake/Data/raw/refs/heads/main/DailyEVFiles.zip","DailyEVFiles.zip")
unzip("DailyEVFiles.zip")
# Read the first daily voting file
AddData <- read.dbf("10162024.dbf")
AllData <- AddData
# Add each day's file name to this list, then run
datafiles <- c("10172024.dbf",
"10182024.dbf",
"10192024.dbf",
"10212024.dbf",
"10222024.dbf",
"10232024.dbf",
"10242024.dbf",
"10252024.dbf",
"10262024.dbf",
"10282024.dbf",
"10292024.dbf",
"10302024.dbf",
"10312024.dbf")
for (x in datafiles) {
AddData <- read.dbf(x, as.is = FALSE)
AllData <- rbind(AllData, AddData)
}
# Save AllData file as .csv
write_csv(AllData,"EarlyVoterData2024.csv")
# Get total votes so far
TotalVotes <- nrow(AllData)
PctVotes <- round((TotalVotes / 224746)*100, digits = 0)
VotesByDay <- AllData %>%
group_by(VOTEDDATE) %>%
summarize(Votes = n()) %>%
rename(Date = VOTEDDATE) %>%
mutate(Date = (str_remove(Date,"2024-")))
# "#2C7865" is a green shade
chart = ggplot(data = VotesByDay,
aes(x = Date,
y = Votes))+
geom_bar(stat="identity", fill = "#41B3A2") +
geom_text(aes(label=comma(Votes)),
vjust=1.6,
color="black",
size=3.5)+
theme(
axis.title.x = element_blank(),
axis.ticks.y = element_blank(),
axis.title.y = element_blank(),
axis.text.y = element_blank(),
panel.background = element_blank())
chart
### Precinct-level map of early voting turnout ***
# Aggregate early voting data by precinct
PrecinctData <- AllData %>%
group_by(PCT_NBR) %>%
summarize(Votes = n()) %>%
rename(Precinct = PCT_NBR)
# Download and unzip a precinct map to pair with the vote data
download.file("https://github.com/drkblake/Data/raw/main/Voting_Precincts_5_31_24.zip","TNVotingPrecincts.zip")
unzip("TNVotingPrecincts.zip")
All_Precincts <- read_sf("Voting_Precincts_5_31_24.shp")
# Filter for RuCo precincts and
# strip dash from precinct numbers
County_Precincts <- All_Precincts %>%
filter(COUNTY == 149) %>%
rename(Precinct = NEWVOTINGP) %>%
mutate(Precinct = (str_remove(Precinct,"-")))
EarlyVotingTurnoutData <- left_join(PrecinctData, County_Precincts, by = "Precinct")
RegData <- read_csv("https://raw.githubusercontent.com/drkblake/Data/refs/heads/main/RegVotersRuCo.csv") %>%
mutate(Precinct = as.character(Precinct))
EarlyVotingTurnoutData <- left_join(EarlyVotingTurnoutData, RegData, by = "Precinct")
EarlyVotingTurnoutData <- EarlyVotingTurnoutData %>%
mutate(Percent = round((Votes/RegVoters)*100), digits = 0) %>%
rename(Voters = RegVoters) %>%
select(Precinct, Votes, Voters, Percent, geometry)
EarlyVotingTurnoutData_sf <- st_as_sf(EarlyVotingTurnoutData)
EarlyVotingTurnout <- mapview(
EarlyVotingTurnoutData_sf,
zcol = "Percent",
layer.name = "Pct. early voted",
popup = popupTable(
EarlyVotingTurnoutData_sf,
feature.id = FALSE,
row.numbers = FALSE,
zcol = c(
"Precinct",
"Votes",
"Voters",
"Percent"
)
)
)
EarlyVotingTurnout
MinTurnout <- min(EarlyVotingTurnoutData$Percent)
MaxTurnout <- max(EarlyVotingTurnoutData$Percent)
MedianTurnout <- median(EarlyVotingTurnoutData$Percent)
MeanTurnout <- mean(EarlyVotingTurnoutData$Percent)
This interactive chart compares and contrasts cable news coverage between Donald Trump, Joseph Robinette Biden, Kamala Harris. The vertical “Count” scale measures the number of 15-second airtime segments that mention the terms queried. The content represented includes content from CNN, MSNBC, Fox News, and other cable news outlets.
Summation of CNN, Fox, MSNBC
Fox News Statistics
CNN Statistics
MSNBC Statistics
if (!require("tidyverse"))
install.packages("tidyverse")
if (!require("plotly"))
install.packages("plotly")
library(tidyverse)
library(plotly)
# Defining date range
startdate <- "20240429"
enddate <- "20241028"
### Trump
# Defining query
# Note:
# In queries, use %20 to indicate a space
# Example: "Donald%20Trump" is "Donald Trump"
# Use parentheses and %20OR%20 for "either/or" queries
# Example: "(Harris%20OR%20Walz)" is "(Harris OR Walz)"
query <- "Donald%20Trump"
# Building the volume dataframe
vp1 <- "https://api.gdeltproject.org/api/v2/tv/tv?query="
vp2 <- "%20market:%22National%22&mode=timelinevol&format=csv&datanorm=raw&startdatetime="
vp3 <- "000000&enddatetime="
vp4 <- "000000"
text_v_url <- paste0(vp1, query, vp2, startdate, vp3, enddate, vp4)
v_url <- URLencode(text_v_url)
v_url
Trump <- read_csv(v_url)
Trump <- Trump %>%
rename(Date = 1, Trump = 3)
### Biden
# Defining query
query <- "Joe%20Biden"
# Building the volume dataframe
vp1 <- "https://api.gdeltproject.org/api/v2/tv/tv?query="
vp2 <- "%20market:%22National%22&mode=timelinevol&format=csv&datanorm=raw&startdatetime="
vp3 <- "000000&enddatetime="
vp4 <- "000000"
text_v_url <- paste0(vp1, query, vp2, startdate, vp3, enddate, vp4)
v_url <- URLencode(text_v_url)
v_url
Biden <- read_csv(v_url)
Biden <- Biden %>%
rename(Date = 1, Biden = 3)
AllData <- left_join(Trump, Biden)
### Harris
# Defining query
query <- "Kamala%20Harris"
# Building the volume dataframe
vp1 <- "https://api.gdeltproject.org/api/v2/tv/tv?query="
vp2 <- "%20market:%22National%22&mode=timelinevol&format=csv&datanorm=raw&startdatetime="
vp3 <- "000000&enddatetime="
vp4 <- "000000"
text_v_url <- paste0(vp1, query, vp2, startdate, vp3, enddate, vp4)
v_url <- URLencode(text_v_url)
v_url
Harris <- read_csv(v_url)
Harris <- Harris %>%
rename(Date = 1, Harris = 3)
AllData <- left_join(AllData, Harris)
### Graphic
AllData <- AllData %>%
arrange(Date)
# Add "WeekOf" variable to the data frame
if (!require("lubridate"))
install.packages("lubridate")
library(lubridate)
AllData$WeekOf <- round_date(AllData$Date,
unit = "week",
week_start = getOption("lubridate.week.start", 1))
CombinedCoverage <- AllData %>%
group_by(WeekOf) %>%
summarize(
Trump = sum(Trump, na.rm = TRUE),
Biden = sum(Biden, na.rm = TRUE),
Harris = sum(Harris, na.rm = TRUE)
)
fig <- plot_ly(
CombinedCoverage,
x = ~ WeekOf,
y = ~ Trump,
name = 'Trump',
type = 'scatter',
mode = 'none',
stackgroup = 'one',
fillcolor = '#B8001F')
fig <- fig %>% add_trace(y = ~ Biden,
name = 'Biden',
fillcolor = '#507687')
fig <- fig %>% add_trace(y = ~ Harris,
name = 'Harris',
fillcolor = '#384B70')
fig <- fig %>% layout(
title = 'Segment counts, by topic and week',
xaxis = list(title = "Week of", showgrid = FALSE),
yaxis = list(title = "Count", showgrid = TRUE)
)
fig
# MSNBC
MSNBC <- AllData %>%
filter(Series == "MSNBC")
figMSNBC <- plot_ly(
MSNBC,
x = ~ WeekOf,
y = ~ Trump,
name = 'Trump',
type = 'scatter',
mode = 'none',
stackgroup = 'one',
fillcolor = '#B8001F')
figMSNBC <- figMSNBC %>% add_trace(y = ~ Harris,
name = 'Biden',
fillcolor = '#507687')
figMSNBC <- figMSNBC %>% add_trace(y = ~ Harris,
name = 'Harris',
fillcolor = '#384B70')
figMSNBC <- figMSNBC %>% layout(
title = 'Segment counts, MSNBC, by topic and week',
xaxis = list(title = "Week of", showgrid = FALSE),
yaxis = list(title = "Count", showgrid = TRUE)
)
figMSNBC
# CNN
CNN <- AllData %>%
filter(Series == "CNN")
figCNN <- plot_ly(
CNN,
x = ~ WeekOf,
y = ~ Trump,
name = 'Trump',
type = 'scatter',
mode = 'none',
stackgroup = 'one',
fillcolor = '#B8001F')
figCNN <- figCNN %>% add_trace(y = ~ Harris,
name = 'Biden',
fillcolor = '#507687')
figCNN <- figCNN %>% add_trace(y = ~ Harris,
name = 'Harris',
fillcolor = '#384B70')
figCNN <- figCNN %>% layout(
title = 'Segment counts, CNN, by topic and week',
xaxis = list(title = "Week of", showgrid = FALSE),
yaxis = list(title = "Count", showgrid = TRUE)
)
figCNN
#Fox News
FoxNews <- AllData %>%
filter(Series == "FOXNEWS")
figFox <- plot_ly(
FoxNews,
x = ~ WeekOf,
y = ~ Trump,
name = 'Trump',
type = 'scatter',
mode = 'none',
stackgroup = 'one',
fillcolor = '#B8001F')
figFox <- figFox %>% add_trace(y = ~ Harris,
name = 'Biden',
fillcolor = '#507687')
figFox <- figFox %>% add_trace(y = ~ Harris,
name = 'Harris',
fillcolor = '#384B70')
figFox <- figFox %>% layout(
title = 'Segment counts, Fox News, by topic and week',
xaxis = list(title = "Week of", showgrid = FALSE),
yaxis = list(title = "Count", showgrid = TRUE)
)
figFox
This graph, made on election night of 2024, shows not only a graphic representation over how each individual state voted, but also an additional graph showing the final electoral votes towards each candidate, Harris and Trump.
if (!require("tidyverse"))
install.packages("tidyverse")
if (!require("tidycensus"))
install.packages("tidycensus")
if (!require("sf"))
install.packages("sf")
if (!require("mapview"))
install.packages("mapview")
if (!require("DataEditR"))
install.packages("DataEditR")
if (!require("leaflet"))
install.packages("leaflet")
if (!require("leaflet.extras2"))
install.packages("leaflet.extras2")
if (!require("plotly"))
install.packages("plotly")
library(tidyverse)
library(tidycensus)
library(sf)
library(mapview)
library(DataEditR)
library(leaflet)
library(leafpop)
library(plotly)
# Getting a U.S.map shapefile
# Note: Provide your Census API key in the line below
census_api_key("b2e8a23fc464f596c54a776db4b502ad30cde5ca")
# U.S. Map
omit <- c("Alaska", "Puerto Rico", "Hawaii")
USMap <- get_acs(
geography = "state",
variables = "DP02_0154P",
year = 2022,
survey = "acs5",
output = "wide",
geometry = TRUE) %>%
filter(!(NAME %in% omit)) %>%
mutate(Full = NAME) %>%
select(GEOID, Full, geometry)
st_write(USMap,"USMap.shp", append = FALSE)
# Data file
USData <- read_csv("https://raw.githubusercontent.com/drkblake/Data/refs/heads/main/ElectoralVotesByState2024.csv")
# Edit / update election data
USData <- data_edit(USData)
write_csv(USData,"ElectoralVotesByState2024.csv")
write_csv(USData,"ElectoralVotesByState2024_latest.csv")
# Merge election and map data
USWinners <- merge(USMap,USData) %>%
mutate(Winner = (case_when(
Harris > Trump ~ "Harris",
Trump > Harris ~ "Trump",
.default = "Counting"))) %>%
mutate(Votes = Votes.to.allocate) %>%
select(State, Votes, Harris, Trump, Winner, geometry)
# Make the election map
USpalette = colorRampPalette(c("darkblue","darkred"))
BigMap <- mapview(USWinners, zcol = "Winner",
col.regions = USpalette,
alpha.regions = .8,
layer.name = "Winner",
popup = popupTable(
USWinners,
feature.id = FALSE,
row.numbers = FALSE,
zcol = c(
"State",
"Votes",
"Harris",
"Trump",
"Winner")))
# Showing the map
BigMap
# Make the electoral vote tracker
# Loading the data from a local .csv file
AllData <- read.csv("ElectoralVotesByState2024.csv")
AllData <- AllData %>%
arrange(State)
# Formatting and transforming the data for plotting
MyData <- AllData %>%
select(State, Votes.to.allocate,
Unallocated, Harris, Trump) %>%
arrange(State)
MyData <- MyData %>%
pivot_longer(cols=c(-State),names_to="Candidate")%>%
pivot_wider(names_from=c(State)) %>%
filter(Candidate == "Harris" |
Candidate == "Trump" |
Candidate == "Unallocated") %>%
arrange(Candidate)
MyData <- MyData %>%
mutate(total = rowSums(.[2:52]))
# Formatting a horizontal line for the plot
hline <- function(y = 0, color = "darkgray") {
list(
type = "line",
x0 = 0,
x1 = 1,
xref = "paper",
y0 = y,
y1 = y,
line = list(color = color)
)
}
# Producing the plot
fig <- plot_ly(
MyData,
x = ~ Candidate,
y = ~ AK,
legend = FALSE,
marker = list(color = c("384B70", "B8001F", "gray")),
type = 'bar',
name = 'AK'
) %>%
add_annotations(
visible = "legendonly",
x = ~ Candidate,
y = ~ (total + 20),
text = ~ total,
showarrow = FALSE,
textfont = list(size = 50)
)
fig <- fig %>% add_trace(y = ~ DE, name = 'DE')
fig <- fig %>% add_trace(y = ~ DC, name = 'DC')
fig <- fig %>% add_trace(y = ~ MT, name = 'MT')
fig <- fig %>% add_trace(y = ~ ND, name = 'ND')
fig <- fig %>% add_trace(y = ~ SD, name = 'SD')
fig <- fig %>% add_trace(y = ~ VT, name = 'VT')
fig <- fig %>% add_trace(y = ~ WY, name = 'WY')
fig <- fig %>% add_trace(y = ~ HI, name = 'HI')
fig <- fig %>% add_trace(y = ~ ID, name = 'ID')
fig <- fig %>% add_trace(y = ~ ME, name = 'ME')
fig <- fig %>% add_trace(y = ~ NH, name = 'NH')
fig <- fig %>% add_trace(y = ~ RI, name = 'RI')
fig <- fig %>% add_trace(y = ~ NE, name = 'NE')
fig <- fig %>% add_trace(y = ~ NM, name = 'NM')
fig <- fig %>% add_trace(y = ~ WV, name = 'WV')
fig <- fig %>% add_trace(y = ~ AR, name = 'AR')
fig <- fig %>% add_trace(y = ~ IA, name = 'IA')
fig <- fig %>% add_trace(y = ~ KS, name = 'KS')
fig <- fig %>% add_trace(y = ~ MS, name = 'MS')
fig <- fig %>% add_trace(y = ~ NV, name = 'NV')
fig <- fig %>% add_trace(y = ~ UT, name = 'UT')
fig <- fig %>% add_trace(y = ~ CT, name = 'CT')
fig <- fig %>% add_trace(y = ~ OK, name = 'OK')
fig <- fig %>% add_trace(y = ~ OR, name = 'OR')
fig <- fig %>% add_trace(y = ~ KY, name = 'KY')
fig <- fig %>% add_trace(y = ~ LA, name = 'LA')
fig <- fig %>% add_trace(y = ~ AL, name = 'AL')
fig <- fig %>% add_trace(y = ~ CO, name = 'CO')
fig <- fig %>% add_trace(y = ~ SC, name = 'SC')
fig <- fig %>% add_trace(y = ~ MD, name = 'MD')
fig <- fig %>% add_trace(y = ~ MN, name = 'MN')
fig <- fig %>% add_trace(y = ~ MO, name = 'MO')
fig <- fig %>% add_trace(y = ~ WI, name = 'WI')
fig <- fig %>% add_trace(y = ~ AZ, name = 'AZ')
fig <- fig %>% add_trace(y = ~ IN, name = 'IN')
fig <- fig %>% add_trace(y = ~ MA, name = 'MA')
fig <- fig %>% add_trace(y = ~ TN, name = 'TN')
fig <- fig %>% add_trace(y = ~ WA, name = 'WA')
fig <- fig %>% add_trace(y = ~ VA, name = 'VA')
fig <- fig %>% add_trace(y = ~ NJ, name = 'NJ')
fig <- fig %>% add_trace(y = ~ NC, name = 'NC')
fig <- fig %>% add_trace(y = ~ GA, name = 'GA')
fig <- fig %>% add_trace(y = ~ MI, name = 'MI')
fig <- fig %>% add_trace(y = ~ OH, name = 'OH')
fig <- fig %>% add_trace(y = ~ IL, name = 'IL')
fig <- fig %>% add_trace(y = ~ PA, name = 'PA')
fig <- fig %>% add_trace(y = ~ FL, name = 'FL')
fig <- fig %>% add_trace(y = ~ NY, name = 'NY')
fig <- fig %>% add_trace(y = ~ TX, name = 'TX')
fig <- fig %>% add_trace(y = ~ CA, name = 'CA')
fig <- fig %>% layout(yaxis = list(title = 'Electoral votes'),
barmode = 'stack',
showlegend = FALSE,
shapes = list(hline(270)))
# Showing the plot
fig
This dynamic graph shows the difference in voting between 2016 and 2024 in Tennessee. Upon investigation between the two election years, one can find an interesting difference between not only how the state as a whole voted, but how each political party performed, for better or worse.
# Required packages
if (!require("tidyverse"))
install.packages("tidyverse")
if (!require("mapview"))
install.packages("mapview")
if (!require("sf"))
install.packages("sf")
if (!require("leaflet"))
install.packages("leaflet")
if (!require("leaflet.extras2"))
install.packages("leaflet.extras2")
if (!require("plotly"))
install.packages("plotly")
if (!require("tidycensus"))
install.packages("tidycensus")
library(tidyverse)
library(mapview)
library(sf)
library(leaflet)
library(leafpop)
library(readxl)
library(plotly)
library(tidycensus)
# Go ahead and transmit your Census API key
# so you don't forget to do it later when getting
# the map you will need:
census_api_key("b2e8a23fc464f596c54a776db4b502ad30cde5ca")
# Download and import election data
# from TN Secretary of State web site:
# https://sos.tn.gov/elections/results
# Get 2016 data
download.file(
"https://sos-tn-gov-files.s3.amazonaws.com/StateGeneralbyPrecinctNov2016.xlsx",
"RawElectionData2016.xlsx",
quiet = TRUE,
mode = "wb"
)
RawElectionData2016 <- read_xlsx("RawElectionData2016.xlsx")
# Filter, calculate, and select
# to get data of interest
# then store results in MyData dataframe
MyData2016 <- RawElectionData2016%>%
filter(OFFICENAME == "United States President",
CANDGROUP == "1") %>%
mutate(
Rep16 = PVTALLY1,
Dem16 = PVTALLY2,
Total16 = Rep16 + Dem16) %>%
select(COUNTY, PRECINCT, OFFICENAME, Rep16, Dem16, Total16)
CountyData2016 <- MyData2016 %>%
select(COUNTY, Rep16, Dem16, Total16) %>%
group_by(COUNTY) %>%
summarize(across(everything(), sum))
# Get 2020 data
download.file(
"https://sos-tn-gov-files.tnsosfiles.com/Nov2020PrecinctDetail.xlsx",
"RawElectionData2020.xlsx",
quiet = TRUE,
mode = "wb"
)
RawElectionData2020 <- read_xlsx("RawElectionData2020.xlsx", sheet = "SOFFICEL")
# Filter, calculate, and select
# to get data of interest
# then store results in MyData dataframe
MyData2020 <- RawElectionData2020%>%
filter(OFFICENAME == "United States President",
CANDGROUP == "1") %>%
mutate(
Rep20 = PVTALLY1,
Dem20 = PVTALLY2,
Total20 = Rep20 + Dem20) %>%
select(COUNTY, PRECINCT, OFFICENAME, Rep20, Dem20, Total20)
MyData2020 <- MyData2020 %>%
mutate(COUNTY = case_when(COUNTY == "Dekalb" ~ "DeKalb",
TRUE ~ COUNTY))
CountyData2020 <- MyData2020%>%
select(COUNTY, Rep20, Dem20, Total20) %>%
group_by(COUNTY) %>%
summarize(across(everything(), sum))
# Get 2024 data
CountyData2024 <- read_csv("https://raw.githubusercontent.com/drkblake/Data/refs/heads/main/CountyData2024.csv")
# Merge Data Files
AllData <- left_join(CountyData2016, CountyData2020, by = "COUNTY")
AllData <- left_join(AllData, CountyData2024, by = "COUNTY")
AllData <- AllData %>%
mutate(
Rep16to20 = Rep20-Rep16,
Dem16to20 = Dem20-Dem16,
Rep20to24 = Rep24-Rep20,
Dem20to24 = Dem24-Dem20,
Rep20finish = case_when(
Rep16to20 < 0 ~ "Loss",
Rep16to20 > 0~ "Gain",
TRUE ~ "No change"),
Dem20finish = case_when(
Dem16to20 < 0 ~ "Loss",
Dem16to20 > 0~ "Gain",
TRUE ~ "No change"),
Rep24finish = case_when(
Rep20to24 < 0 ~ "Loss",
Rep20to24 > 0~ "Gain",
TRUE ~ "No change"),
Dem24finish = case_when(
Dem20to24 < 0 ~ "Loss",
Dem20to24 > 0~ "Gain",
TRUE ~ "No change"))
# Get a county map
CountyMap <- get_acs(geography = "county",
state = "TN",
variables = c(Japanese_ = "DP05_0048"),
year = 2022,
survey = "acs5",
output = "wide",
geometry = TRUE)
CountyMap <- CountyMap %>%
mutate(COUNTY = (str_remove(NAME," County, Tennessee"))) %>%
left_join(AllData, CountyMap, by = "COUNTY") %>%
select(COUNTY,
Rep16, Dem16, Total16,
Rep20, Dem20, Total20,
Rep24, Dem24, Total24,
Rep16to20, Dem16to20,
Rep20to24, Dem20to24,
Rep20finish,Dem20finish,
Rep24finish,Dem24finish,
geometry)
# 2020 Map
Map16to20Rep <- mapview(
CountyMap,
zcol = "Rep20finish",
col.regions = "red",
layer.name = "Rep 2020",
popup = popupTable(
CountyMap,
feature.id = FALSE,
row.numbers = FALSE,
zcol = c("COUNTY", "Rep16", "Rep20", "Rep16to20")
)
)
mypalette = colorRampPalette(c('blue', 'lightblue'))
Map16to20Dem <- mapview(
CountyMap,
zcol = "Dem20finish",
col.regions = mypalette,
layer.name = "Dem 2020",
popup = popupTable(
CountyMap,
feature.id = FALSE,
row.numbers = FALSE,
zcol = c("COUNTY", "Dem16", "Dem20", "Dem16to20")
)
)
Map16to20Dem | Map16to20Rep
# 2024 Map
mypalette = colorRampPalette(c('red', 'pink'))
Map20to24Rep <- mapview(
CountyMap,
zcol = "Rep24finish",
col.regions = mypalette,
layer.name = "Rep 2024",
popup = popupTable(
CountyMap,
feature.id = FALSE,
row.numbers = FALSE,
zcol = c("COUNTY", "Rep20", "Rep24", "Rep20to24")
)
)
mypalette = colorRampPalette(c('blue', 'lightblue'))
Map20to24Dem <- mapview(
CountyMap,
zcol = "Dem24finish",
col.regions = mypalette,
layer.name = "Dem 2024",
popup = popupTable(
CountyMap,
feature.id = FALSE,
row.numbers = FALSE,
zcol = c("COUNTY", "Dem20", "Dem24", "Dem20to24")
)
)
Map20to24Dem | Map20to24Rep