summary(var_model)
VAR Estimation Results:
=========================
Endogenous variables: dlip, dunemp, s
Deterministic variables: const
Sample size: 208
Log Likelihood: 554.153
Roots of the characteristic polynomial:
0.8005 0.7518 0.7518 0.5129 0.5129 0.4941 0.4941 0.3861 0.3861
Call:
VAR(y = data, p = 3, type = "const")
Estimation results for equation dlip:
=====================================
dlip = dlip.l1 + dunemp.l1 + s.l1 + dlip.l2 + dunemp.l2 + s.l2 + dlip.l3 + dunemp.l3 + s.l3 + const
Estimate Std. Error t value Pr(>|t|)
dlip.l1 5.610e-01 1.013e-01 5.536 9.74e-08 ***
dunemp.l1 -6.289e-03 5.259e-03 -1.196 0.233
s.l1 -1.071e-03 1.663e-03 -0.644 0.520
dlip.l2 -8.249e-02 1.065e-01 -0.775 0.439
dunemp.l2 7.212e-03 5.398e-03 1.336 0.183
s.l2 -9.415e-04 2.391e-03 -0.394 0.694
dlip.l3 1.919e-01 1.011e-01 1.899 0.059 .
dunemp.l3 4.679e-03 4.790e-03 0.977 0.330
s.l3 8.134e-05 1.699e-03 0.048 0.962
const -5.530e-04 1.897e-03 -0.292 0.771
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.01242 on 198 degrees of freedom
Multiple R-Squared: 0.4046, Adjusted R-squared: 0.3776
F-statistic: 14.95 on 9 and 198 DF, p-value: < 2.2e-16
Estimation results for equation dunemp:
=======================================
dunemp = dlip.l1 + dunemp.l1 + s.l1 + dlip.l2 + dunemp.l2 + s.l2 + dlip.l3 + dunemp.l3 + s.l3 + const
Estimate Std. Error t value Pr(>|t|)
dlip.l1 -7.372118 1.938976 -3.802 0.000191 ***
dunemp.l1 0.329196 0.100643 3.271 0.001264 **
s.l1 0.011522 0.031831 0.362 0.717763
dlip.l2 0.295902 2.037186 0.145 0.884661
dunemp.l2 -0.073243 0.103304 -0.709 0.479156
s.l2 0.001648 0.045750 0.036 0.971300
dlip.l3 -2.737375 1.934281 -1.415 0.158584
dunemp.l3 -0.038370 0.091671 -0.419 0.675987
s.l3 0.050335 0.032512 1.548 0.123167
const 0.168639 0.036292 4.647 6.14e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.2377 on 198 degrees of freedom
Multiple R-Squared: 0.5219, Adjusted R-squared: 0.5002
F-statistic: 24.02 on 9 and 198 DF, p-value: < 2.2e-16
Estimation results for equation s:
==================================
s = dlip.l1 + dunemp.l1 + s.l1 + dlip.l2 + dunemp.l2 + s.l2 + dlip.l3 + dunemp.l3 + s.l3 + const
Estimate Std. Error t value Pr(>|t|)
dlip.l1 3.06994 4.29574 0.715 0.47567
dunemp.l1 -0.37053 0.22297 -1.662 0.09814 .
s.l1 1.06119 0.07052 15.048 < 2e-16 ***
dlip.l2 0.45851 4.51333 0.102 0.91918
dunemp.l2 0.39479 0.22887 1.725 0.08609 .
s.l2 -0.31763 0.10136 -3.134 0.00199 **
dlip.l3 3.28676 4.28534 0.767 0.44401
dunemp.l3 -0.27995 0.20309 -1.378 0.16963
s.l3 0.14334 0.07203 1.990 0.04797 *
const -0.21507 0.08040 -2.675 0.00810 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.5267 on 198 degrees of freedom
Multiple R-Squared: 0.8254, Adjusted R-squared: 0.8175
F-statistic: 104 on 9 and 198 DF, p-value: < 2.2e-16
Covariance matrix of residuals:
dlip dunemp s
dlip 0.0001543 -0.002119 0.001198
dunemp -0.0021188 0.056517 -0.022737
s 0.0011976 -0.022737 0.277405
Correlation matrix of residuals:
dlip dunemp s
dlip 1.0000 -0.7174 0.1830
dunemp -0.7174 1.0000 -0.1816
s 0.1830 -0.1816 1.0000
a)Verifique se s (spread de juros) Granger causa ∆lip.
causality(var_model, cause = "s")
$Granger
Granger causality H0: s do not Granger-cause dlip dunemp
data: VAR object var_model
F-Test = 3.6948, df1 = 6, df2 = 594, p-value = 0.001295
$Instant
H0: No instantaneous causality between: s and dlip dunemp
data: VAR object var_model
Chi-squared = 7.7517, df = 2, p-value = 0.02074
b)Verifique se s (spread de juros) Granger causa ∆unemp. c)Analise a decomposição da variância desse VAR.
d)Analise as funções de impulso resposta.