# Load packages

# Core
library(tidyverse)
library(tidyquant)

# time series
library(timetk)

Goal

Simulate future portfolio returns

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”

market: “SPY”

from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AGG        0.25
## 2 EEM        0.25
## 3 EFA        0.2 
## 4 IJS        0.2 
## 5 SPY        0.1

4 Build a portfolio

# ?tq_portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 60 × 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31  0.0204 
##  2 2013-02-28 -0.00239
##  3 2013-03-28  0.0121 
##  4 2013-04-30  0.0174 
##  5 2013-05-31 -0.0128 
##  6 2013-06-28 -0.0247 
##  7 2013-07-31  0.0321 
##  8 2013-08-30 -0.0224 
##  9 2013-09-30  0.0511 
## 10 2013-10-31  0.0301 
## # ℹ 50 more rows

5 Simulating growth of a dollar

# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899137
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.02347488
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
##   [1]  8.963905e-05 -2.885415e-03  3.370368e-02 -2.391953e-04 -2.103136e-02
##   [6]  4.593694e-03  4.209680e-02  2.398950e-02 -4.444444e-03 -1.685896e-03
##  [11]  1.272998e-02  2.656181e-02 -2.821826e-02 -1.327751e-02  2.817012e-02
##  [16] -1.261704e-02 -5.867640e-04 -4.340838e-03  4.285321e-03 -2.554305e-02
##  [21]  3.108442e-02 -9.162811e-03 -4.880504e-03 -4.015087e-03 -2.294966e-02
##  [26]  2.358376e-02  1.370565e-02 -3.667026e-03  2.781322e-03 -3.368377e-03
##  [31]  4.199597e-02 -1.972256e-02  4.537257e-02  1.777547e-02 -1.288692e-02
##  [36] -2.224000e-02  2.533090e-02  2.403984e-02  1.570693e-02 -2.779338e-02
##  [41] -2.292618e-02 -2.901363e-02 -2.245595e-02  6.587289e-02 -2.577883e-03
##  [46] -2.114908e-02 -1.604064e-02 -4.075098e-02  3.979813e-03  1.171160e-02
##  [51] -2.266663e-02 -2.352823e-02 -5.503401e-03  1.110844e-02  2.577765e-02
##  [56] -5.513459e-03  1.490712e-02 -7.597913e-03 -9.945841e-03 -3.676245e-02
##  [61] -3.884468e-03  5.486852e-03 -3.016147e-02  4.997055e-02  4.577521e-02
##  [66] -8.479940e-03 -1.382276e-02 -1.774832e-02 -1.052739e-02 -6.304042e-02
##  [71] -2.926472e-03  2.112300e-02 -1.724644e-02 -3.930923e-03  2.419861e-02
##  [76]  1.453845e-02  4.479324e-02  3.946367e-02  1.575172e-02 -6.378120e-03
##  [81]  1.453841e-02  2.356904e-02  5.358455e-02  1.565901e-02  5.287907e-02
##  [86] -5.937413e-03  7.907624e-03 -7.948448e-03 -6.293166e-03  1.573346e-02
##  [91]  3.997506e-02 -5.518209e-03  1.137082e-03 -1.443962e-03  2.598927e-03
##  [96] -3.509668e-02  3.466241e-02 -9.268443e-03  4.138497e-02  3.096520e-02
## [101] -7.823942e-03 -1.511371e-02  1.817567e-02 -2.583663e-02  4.596328e-02
## [106]  2.983865e-02  1.023710e-02 -2.108578e-03  3.327309e-02 -3.268235e-02
## [111]  1.777931e-02 -1.224527e-02 -1.698345e-02  1.416890e-02  9.958738e-04
## [116]  1.334033e-03  1.663847e-02  2.012296e-02  4.822744e-03  3.660317e-03
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 × 1
##    returns
##      <dbl>
##  1   1    
##  2   1.00 
##  3   0.997
##  4   1.03 
##  5   1.00 
##  6   0.979
##  7   1.00 
##  8   1.04 
##  9   1.02 
## 10   0.996
## # ℹ 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
    mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
    select(growth)

simulated_growth
## # A tibble: 121 × 1
##    growth
##     <dbl>
##  1  1    
##  2  1.00 
##  3  0.997
##  4  1.03 
##  5  1.03 
##  6  1.01 
##  7  1.01 
##  8  1.06 
##  9  1.08 
## 10  1.08 
## # ℹ 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 4.663778

6 Simulation function

simulate_accumulation <- function(initial_value, N, mean_return, sd_return) {
    
    # Add a dollar
    simulated_returns_add_1 <- tibble(returns = c(initial_value, 1 + rnorm(N, mean_return, sd_return)))
    
    # Calculate the cumulative growth of a dollar
    simulated_growth <- simulated_returns_add_1 %>%
        mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
        select(growth)
    
    return(simulated_growth)
       
}

simulate_accumulation(initial_value = 100, N = 240, mean_return = 0.005, sd_return = 0.01) %>%
    tail()
## # A tibble: 6 × 1
##   growth
##    <dbl>
## 1   340.
## 2   339.
## 3   340.
## 4   346.
## 5   347.
## 6   351.
dump(list = c("simulate_accumulation"),
     file = "../00_scripts/simulate_accumulation.R")

7 Running multiple simulations

# Create a vector of 1s as a starting point
sims <-  51
starts <- rep(1, sims) %>%
    set_names(paste0("sim", 1:sims))

starts
##  sim1  sim2  sim3  sim4  sim5  sim6  sim7  sim8  sim9 sim10 sim11 sim12 sim13 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51 
##     1     1     1     1     1     1     1     1     1     1     1     1
# Simulate
monte_carlo_sim_51 <- starts %>%
    
    # Simulate
    map_dfc(.x = ., 
            .f = ~simulate_accumulation(initial_value = .x, 
                                         N             = 120, 
                                         mean_return   = mean_port_return, 
                                         sd_return     =  stddev_port_return)) %>%
    
    # Add column month
    mutate(month = 1:nrow(.)) %>%
    select(month, everything()) %>%
    
    # Rearrange column names
    set_names(c("month", names(starts))) %>%
    
    # Transform to long form
    pivot_longer(cols = -month, names_to = "sim", values_to = "growth")

monte_carlo_sim_51
## # A tibble: 6,171 × 3
##    month sim   growth
##    <int> <chr>  <dbl>
##  1     1 sim1       1
##  2     1 sim2       1
##  3     1 sim3       1
##  4     1 sim4       1
##  5     1 sim5       1
##  6     1 sim6       1
##  7     1 sim7       1
##  8     1 sim8       1
##  9     1 sim9       1
## 10     1 sim10      1
## # ℹ 6,161 more rows
# Find quantiles
monte_carlo_sim_51 %>%
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    pull(growth) %>%
    
    quantile(probs = c(0, 0.25, 0.5, 0.75, 1)) %>%
    round(2)
##   0%  25%  50%  75% 100% 
## 1.02 1.85 2.15 2.48 4.33

8 Visualizing simulations with ggplot

monte_carlo_sim_51 %>%
    
    ggplot(aes(x = month, y = growth, color = sim)) +
    geom_line() +
    theme(legend.position = "none") +
    theme(plot.title = element_text(hjust = 0.5)) +
    
    labs(title = "Simulating growth of $1 over 120 months")

Line plot with max, median, and min

#  Step 1 Summarize data into max, median, and min of last value
sim_summary <- monte_carlo_sim_51 %>%
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    
    summarise(max    = max(growth),
              median = median(growth), 
              min    = min(growth))

sim_summary
## # A tibble: 1 × 3
##     max median   min
##   <dbl>  <dbl> <dbl>
## 1  4.33   2.15  1.02
# Step 2 Plot
monte_carlo_sim_51 %>%
    
    group_by(sim) %>%
    filter(last(growth) == sim_summary$max | 
               last(growth) == sim_summary$median |
               last(growth) == sim_summary$min) %>%
    ungroup() %>%
    
    # Plot
    ggplot(aes(x = month, y = growth, color = sim)) +
    geom_line() +
    theme(legend.position = "none") +
    theme(plot.title = element_text(hjust = 0.5)) +
    theme(plot.subtitle = element_text(hjust = 0.5)) +
    
    labs(title = "Simulating growth of $1 over 120 months",
         subtitile = "Maximum, Median, and Minimum Simulation")