# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and compare skewness of your portfolio and its assets.
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("MTN", "AAPL", "NFLX", "DIS", "GE")
prices <- tq_get(x= symbols,
get ="stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select= adjusted,
mutate_fun= periodReturn,
period= "monthly",
type= "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "DIS" "GE" "MTN" "NFLX"
#weights
weights <- c(0.25,0.25,0.2,0.2,0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols,weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AAPL 0.25
## 2 DIS 0.25
## 3 GE 0.2
## 4 MTN 0.2
## 5 NFLX 0.1
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
replace_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0461
## 2 2013-02-28 0.0360
## 3 2013-03-28 0.0340
## 4 2013-04-30 0.0329
## 5 2013-05-31 0.0330
## 6 2013-06-28 -0.0411
## 7 2013-07-31 0.0795
## 8 2013-08-30 0.0183
## 9 2013-09-30 0.0387
## 10 2013-10-31 0.0591
## # ℹ 50 more rows
portfolio_skew_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Skewness)
portfolio_skew_tidyquant_builtin_percent
## # A tibble: 1 × 1
## Skewness
## <dbl>
## 1 -0.615
# Mean of portfolio returns
portfolio_mean_tidyquant_builtin_percent <-
mean(portfolio_returns_tbl$returns)
portfolio_skew_tidyquant_builtin_percent
## # A tibble: 1 × 1
## Skewness
## <dbl>
## 1 -0.615
## Calculate sd of portfolio returns
sd_portfolio <- sd(portfolio_returns_tbl$returns)
mean_portfolio <- mean(portfolio_returns_tbl$returns)
portfolio_returns_tbl %>%
#Add a new variable
mutate(extreme_neg = ifelse(returns < mean_portfolio - 2 * sd_portfolio, "ext_neg",
"not_ext_neg")) %>%
ggplot(aes(x = returns, fill = extreme_neg)) +
geom_histogram(binwidth = 0.003)
scale_x_continuous(breaks = seq(-0.06,0.06,0.02))
## <ScaleContinuousPosition>
## Range:
## Limits: 0 -- 1
labs(x = "monthly returns")
## $x
## [1] "monthly returns"
##
## attr(,"class")
## [1] "labels"
# Data transformation: calculate skewness
asset_skewness_tbl <- asset_returns_tbl %>%
group_by(asset) %>%
summarise(skew = skewness(returns)) %>%
ungroup() %>%
# Add portfolio skewness
add_row(tibble(asset = "portfolio",
skew = skewness(portfolio_returns_tbl$returns)))
asset_skewness_tbl
## # A tibble: 6 × 2
## asset skew
## <chr> <dbl>
## 1 AAPL -0.555
## 2 DIS -0.502
## 3 GE -0.333
## 4 MTN 0.297
## 5 NFLX 0.909
## 6 portfolio -0.615
# Plot Skewness
asset_skewness_tbl %>%
ggplot(aes(x = asset, y = skew, color = asset)) +
geom_point() +
ggrepel::geom_text_repel(aes(label = asset)) +
labs(y = "skewness") + theme(legend.position = "none")
Is any asset in your portfolio more likely to return extreme positive returns than your portfolio collectively? Discuss in terms of skewness. You may also refer to the distribution of returns you plotted in Code along 4.
Netflix is the most likely asset in the portfolio to return extreme positive outcomes, but it comes with higher risk and volatility.