Does the money per student have a direct effect on the outcome of the student’s science proficiency scores is the question I am trying to answer for my project. I believe that we will see there being a positive trend of the counties with hgiher money per students numbers that they will tend to have higher proficiency scores.
## # A tibble: 55 × 7
## county school school_name population_group subgroup science_proficiency
## <chr> <chr> <chr> <chr> <chr> <dbl>
## 1 Barbour 999 Barbour Count… Total Population Total 26.0
## 2 Berkeley 999 Berkeley Coun… Total Population Total 28.6
## 3 Boone 999 Boone County … Total Population Total 19.6
## 4 Braxton 999 Braxton Count… Total Population Total 22.6
## 5 Brooke 999 Brooke County… Total Population Total 21.1
## 6 Cabell 999 Cabell County… Total Population Total 30.8
## 7 Calhoun 999 Calhoun Count… Total Population Total 27.8
## 8 Clay 999 Clay County T… Total Population Total 23.3
## 9 Doddridge 999 Doddridge Cou… Total Population Total 31.3
## 10 Fayette 999 Fayette Count… Total Population Total 17.4
## # ℹ 45 more rows
## # ℹ 1 more variable: proficiency <dbl>
## # A tibble: 55 × 9
## name enroll tfedrev tstrev tlocrev totalexp ppcstot county moneyPerStudent
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl>
## 1 BARBOU… 2144 7559 16584 5872 28021 11885 Barbo… 13.1
## 2 BERKEL… 19722 48407 140127 86699 264253 12704 Berke… 13.4
## 3 BOONE … 3177 8194 26858 14564 48642 14663 Boone 15.3
## 4 BRAXTO… 1747 5479 12748 6404 24417 13153 Braxt… 14.0
## 5 BROOKE… 2582 6791 17114 21352 41908 15642 Brooke 16.2
## 6 CABELL… 11667 42518 88337 66699 183621 14538 Cabell 15.7
## 7 CALHOU… 861 3254 9953 3190 15154 16085 Calho… 17.6
## 8 CLAY C… 1669 6157 17655 2791 25963 13825 Clay 15.6
## 9 DODDRI… 1082 3455 3999 31752 38493 23563 Doddr… 35.6
## 10 FAYETT… 5594 15293 51759 23477 83373 13777 Fayet… 14.9
## # ℹ 45 more rows
## # A tibble: 55 × 2
## county unemployed
## <chr> <dbl>
## 1 McDowell County 15.1
## 2 Braxton County 14.4
## 3 Logan County 13.3
## 4 Calhoun County 12.2
## 5 Roane County 11.7
## 6 Clay County 11.2
## 7 Mingo County 11.2
## 8 Webster County 11.1
## 9 Monroe County 10.6
## 10 Barbour County 10.1
## # ℹ 45 more rows
Summary of Data
## county school school_name population_group
## Length:55 Length:55 Length:55 Length:55
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
## subgroup science_proficiency proficiency
## Length:55 Min. :14.81 Min. :14.81
## Class :character 1st Qu.:21.45 1st Qu.:21.45
## Mode :character Median :24.36 Median :24.36
## Mean :25.30 Mean :25.30
## 3rd Qu.:29.39 3rd Qu.:29.39
## Max. :41.80 Max. :41.80
## name enroll tfedrev tstrev
## Length:55 Min. : 800 Min. : 1511 Min. : 3895
## Class :character 1st Qu.: 1654 1st Qu.: 4991 1st Qu.: 12668
## Mode :character Median : 3177 Median : 10158 Median : 26858
## Mean : 4586 Mean : 13312 Mean : 34234
## 3rd Qu.: 5104 3rd Qu.: 14518 3rd Qu.: 39496
## Max. :24392 Max. :109522 Max. :176062
## tlocrev totalexp ppcstot county
## Min. : 1956 Min. : 13954 Min. :11885 Length:55
## 1st Qu.: 8194 1st Qu.: 26486 1st Qu.:13151 Class :character
## Median : 14813 Median : 48642 Median :13777 Mode :character
## Mean : 25032 Mean : 69482 Mean :14466
## 3rd Qu.: 33333 3rd Qu.: 81172 3rd Qu.:15236
## Max. :145623 Max. :416491 Max. :23563
## moneyPerStudent
## Min. :12.78
## 1st Qu.:13.98
## Median :14.95
## Mean :15.88
## 3rd Qu.:16.27
## Max. :35.58
## county unemployed
## Length:55 Min. : 2.600
## Class :character 1st Qu.: 5.050
## Mode :character Median : 6.400
## Mean : 7.055
## 3rd Qu.: 8.500
## Max. :15.100
For this graph, I did totalexp divided by enrollment to get the money allocated per student and then I decided to graph the science proficiency scores against the money per student to see how it looked. Here does not show a super strong correlation between the two as the place with the highest proficiency is very middle of the pack in regards to the money per student.
## proficiency moneyPerStudent
## proficiency 1.0000000 0.1705259
## moneyPerStudent 0.1705259 1.0000000
Here I did a correlation matrix to see if there was a good correlation
between the proficiency and the money per student. The correlation ended
up being .1705259 which is not very good.
The p value of .869 is very high and tells us that there is no significant relationship between money per student and proficiency.
Overall, I have learned that I was wrong and that the money per student of a county does not truly indicate a students proficiency score, as nothing really suggests they have a good correlation. Things I could have done better are maybe dive into other indicators and find something that does lead to a good correlation.