R Portfolio Final Project

Here is a compilation of the different R code maps I worked on in Fall 2024.

GRAPI by Tennessee House District ARTICLE DESCRIBING

## Loading required package: tidyverse
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
## Loading required package: tidycensus
## 
## Loading required package: sf
## 
## Linking to GEOS 3.11.0, GDAL 3.5.3, PROJ 9.1.0; sf_use_s2() is TRUE
## 
## Loading required package: mapview
## 
## Loading required package: gtExtras
## 
## Loading required package: gt
## 
## To install your API key for use in future sessions, run this function with `install = TRUE`.
Variables
name label concept
DP04_0136P Percent!!GROSS RENT AS A PERCENTAGE OF HOUSEHOLD INCOME (GRAPI)!!Occupied units paying rent (excluding units where GRAPI cannot be computed) Selected Housing Characteristics
DP04_0137P Percent!!GROSS RENT AS A PERCENTAGE OF HOUSEHOLD INCOME (GRAPI)!!Occupied units paying rent (excluding units where GRAPI cannot be computed)!!Less than 15.0 percent Selected Housing Characteristics
DP04_0138P Percent!!GROSS RENT AS A PERCENTAGE OF HOUSEHOLD INCOME (GRAPI)!!Occupied units paying rent (excluding units where GRAPI cannot be computed)!!15.0 to 19.9 percent Selected Housing Characteristics
DP04_0139P Percent!!GROSS RENT AS A PERCENTAGE OF HOUSEHOLD INCOME (GRAPI)!!Occupied units paying rent (excluding units where GRAPI cannot be computed)!!20.0 to 24.9 percent Selected Housing Characteristics
DP04_0140P Percent!!GROSS RENT AS A PERCENTAGE OF HOUSEHOLD INCOME (GRAPI)!!Occupied units paying rent (excluding units where GRAPI cannot be computed)!!25.0 to 29.9 percent Selected Housing Characteristics
DP04_0141P Percent!!GROSS RENT AS A PERCENTAGE OF HOUSEHOLD INCOME (GRAPI)!!Occupied units paying rent (excluding units where GRAPI cannot be computed)!!30.0 to 34.9 percent Selected Housing Characteristics
DP04_0142P Percent!!GROSS RENT AS A PERCENTAGE OF HOUSEHOLD INCOME (GRAPI)!!Occupied units paying rent (excluding units where GRAPI cannot be computed)!!35.0 percent or more Selected Housing Characteristics
DP04_0143P Percent!!GROSS RENT AS A PERCENTAGE OF HOUSEHOLD INCOME (GRAPI)!!Occupied units paying rent (excluding units where GRAPI cannot be computed)!!Not computed Selected Housing Characteristics
## Getting data from the 2018-2022 5-year ACS
## Downloading feature geometry from the Census website.  To cache shapefiles for use in future sessions, set `options(tigris_use_cache = TRUE)`.
## Using the ACS Data Profile
##   |                                                                              |                                                                      |   0%  |                                                                              |==                                                                    |   3%  |                                                                              |====                                                                  |   6%  |                                                                              |=======                                                               |  10%  |                                                                              |=========                                                             |  13%  |                                                                              |===========                                                           |  16%  |                                                                              |=============                                                         |  19%  |                                                                              |================                                                      |  22%  |                                                                              |==================                                                    |  25%  |                                                                              |====================                                                  |  29%  |                                                                              |======================                                                |  32%  |                                                                              |========================                                              |  35%  |                                                                              |===========================                                           |  38%  |                                                                              |=============================                                         |  41%  |                                                                              |===============================                                       |  44%  |                                                                              |=================================                                     |  48%  |                                                                              |===================================                                   |  50%  |                                                                              |=====================================                                 |  53%  |                                                                              |=======================================                               |  56%  |                                                                              |==========================================                            |  59%  |                                                                              |============================================                          |  63%  |                                                                              |==============================================                        |  66%  |                                                                              |================================================                      |  69%  |                                                                              |===================================================                   |  72%  |                                                                              |=====================================================                 |  75%  |                                                                              |=======================================================               |  79%  |                                                                              |=========================================================             |  82%  |                                                                              |===========================================================           |  85%  |                                                                              |==============================================================        |  88%  |                                                                              |================================================================      |  91%  |                                                                              |==================================================================    |  94%  |                                                                              |====================================================================  |  98%  |                                                                              |======================================================================| 100%
Estimate by district
District Estimate Estimate_MOE From To
State House District 13 (2022), Tennessee 42.9 7.7 35.2 50.6
State House District 37 (2022), Tennessee 40.3 5.5 34.8 45.8
State House District 34 (2022), Tennessee 35.9 4.8 31.1 40.7
State House District 49 (2022), Tennessee 35.7 5.6 30.1 41.3
State House District 48 (2022), Tennessee 34.4 5.9 28.5 40.3
# Installing and loading required packages

if (!require("tidyverse"))
  install.packages("tidyverse")
if (!require("tidycensus"))
  install.packages("tidycensus")
if (!require("sf"))
  install.packages("sf")
if (!require("mapview"))
  install.packages("mapview")
if (!require("gtExtras"))
  install.packages("gtExtras")

library(tidyverse)
library(tidycensus)
library(sf)
library(mapview)
library(gtExtras)

# Transmitting API key

census_api_key("9924ba1b40725ddbadf37b730bce3faf0d1da566")

# Fetching ACS codebooks

DetailedTables <- load_variables(2022, "acs5", cache = TRUE)
SubjectTables <- load_variables(2022, "acs5/subject", cache = TRUE)
ProfileTables <- load_variables(2022, "acs5/profile", cache = TRUE)
Codebook <- DetailedTables %>% 
  select(name, label, concept)
Codebook <- bind_rows(Codebook,SubjectTables)
Codebook <- bind_rows(Codebook,ProfileTables)
Codebook <- Codebook %>% 
  distinct(label, .keep_all = TRUE)
rm(DetailedTables,
   SubjectTables,
   ProfileTables)

# Filtering the codebook

MyVars <- Codebook %>% 
  filter(grepl("GRAPI", label) &
           grepl("Percent!!", label))

# Making a table of the filtered variables

MyVarsTable <- gt(MyVars) %>%
  tab_header("Variables") %>%
  cols_align(align = "left") %>%
  gt_theme_538

# Displaying the table

MyVarsTable

# Defining the variable to retrieve

VariableList = 
  c(Estimate_ = "DP04_0142P")

# Fetching data

AllData <- get_acs(
  geography = "state legislative district (lower chamber)",
  state = "TN",
  variables = VariableList,
  year = 2022,
  survey = "acs5",
  output = "wide",
  geometry = TRUE
)

# Mutating, selecting and sorting the data

AllData <- AllData %>%
  mutate(
    District = NAME,
    Estimate = Estimate_E,
    Estimate_MOE = Estimate_M,
    From = round(Estimate - Estimate_MOE, 2),
    To = round(Estimate + Estimate_MOE, 2)
  ) %>%
  select(District, Estimate, Estimate_MOE, From, To, geometry) %>%
  arrange(desc(Estimate))

# Filtering for Rutherford County districts

MyData <- AllData %>%
  filter(
    District == "State House District 13 (2022), Tennessee" |
      District == "State House District 37 (2022), Tennessee" |
      District == "State House District 49 (2022), Tennessee" |
      District == "State House District 48 (2022), Tennessee" |
      District == "State House District 34 (2022), Tennessee"
  )

# Producing a map

MapData <- st_as_sf(MyData)

MyMap <- mapview(MapData,
        zcol = "Estimate",
        layer.name = "Estimate",
        popup = TRUE)
#Displaying the map

MyMap

# Producing a table

TableData <- st_drop_geometry(MapData)
MyTable <- gt(TableData) %>%
  tab_header("Estimate by district") %>%
  cols_align(align = "left") %>%
  gt_theme_538

# Displaying the table

MyTable