# Load packages

# Core
library(tidyverse)
library(tidyquant)

# Source function
source("../00_scripts/simulate_accumulation.R")

1 Import stock prices

Revise the code below.

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "1997-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

Revise the code for weights.

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AGG        0.25
## 2 EEM        0.25
## 3 EFA        0.2 
## 4 IJS        0.2 
## 5 SPY        0.1

4 Build a portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 240 × 2
##    date        returns
##    <date>        <dbl>
##  1 1998-01-30  0.00128
##  2 1998-02-27  0.00670
##  3 1998-03-31  0.00476
##  4 1998-04-30  0.00127
##  5 1998-05-29 -0.00210
##  6 1998-06-30  0.00417
##  7 1998-07-31 -0.00136
##  8 1998-08-31 -0.0152 
##  9 1998-09-30  0.00617
## 10 1998-10-30  0.00780
## # ℹ 230 more rows

5 Simulating growth of a dollar

# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005099139
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.0339302

6 Simulation function

No need

7 Running multiple simulations

# Create a vector of 1s as a starting point
sims <- 51
starts <- rep(100, sims) %>%
    set_names(paste0("sim", 1:sims))

starts
##  sim1  sim2  sim3  sim4  sim5  sim6  sim7  sim8  sim9 sim10 sim11 sim12 sim13 
##   100   100   100   100   100   100   100   100   100   100   100   100   100 
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26 
##   100   100   100   100   100   100   100   100   100   100   100   100   100 
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39 
##   100   100   100   100   100   100   100   100   100   100   100   100   100 
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51 
##   100   100   100   100   100   100   100   100   100   100   100   100
# Simulate
monte_carlo_sim_51 <- starts %>%
    
    # Simulate
    map_dfc(.x = .,
            .f = ~simulate_accumulation(initial_value = .x,
                                        N             = 240,
                                        mean_return   = mean_port_return,
                                        sd_return     = stddev_port_return)) %>%
    
    #Add column month
    mutate(month = 1:nrow(.)) %>%
    select(month, everything()) %>%
    
    # Rearrange column names
    set_names(c("month", names(starts))) %>%
    
    # Transform to long form
    pivot_longer(cols = -month, names_to = "sim", values_to = "growth")

monte_carlo_sim_51 
## # A tibble: 12,291 × 3
##    month sim   growth
##    <int> <chr>  <dbl>
##  1     1 sim1     100
##  2     1 sim2     100
##  3     1 sim3     100
##  4     1 sim4     100
##  5     1 sim5     100
##  6     1 sim6     100
##  7     1 sim7     100
##  8     1 sim8     100
##  9     1 sim9     100
## 10     1 sim10    100
## # ℹ 12,281 more rows
# Find quantiles
monte_carlo_sim_51 %>%
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    pull(growth) %>%
    
    quantile(probs = c(0, 0.25, 0.5, 0.75, 1)) %>%
    round(2)
##     0%    25%    50%    75%   100% 
##  80.99 231.74 323.75 463.79 910.36

8 Visualizing simulations with ggplot

Line Plot of Simulations with Max, Median, and Min Line plot with max, median, and min

# Step 1 Summarize data into max, median, and min of last value
sim_summary <- monte_carlo_sim_51 %>%
    
    group_by(sim) %>%
    summarize(growth = last(growth)) %>%
    ungroup() %>%
    
    summarise(max    = max(growth),
              median = median(growth),
              min    = min(growth))

sim_summary
## # A tibble: 1 × 3
##     max median   min
##   <dbl>  <dbl> <dbl>
## 1  910.   324.  81.0
# Step 2 Plot
monte_carlo_sim_51 %>%
    
    # Filter for max, median, and min sim 
    group_by(sim) %>%
    filter(last(growth) == sim_summary$max |
                last(growth) == sim_summary$median | 
                last(growth) == sim_summary$min) %>%
    ungroup() %>%
    
    # Plot
    ggplot(aes(x = month, y = growth, color = sim)) +
    geom_line() +
    
    theme(legend.position = "none") + 
    theme(plot.title = element_text(hjust = 0.5)) +
    theme(plot.subtitle = element_text(hjust = 0.5)) +
    
    
    labs(title = "Simulating growth of $100 over 240 months",
         subtitle = "Maximum, Median, Minimum Simulation")

Based on the Monte Carlo simulation results, how much should you expect from your $100 investment after 20 years? What is the best-case scenario? What is the worst-case scenario? What are limitations of this simulation analysis?

Expected Growth (Median Scenario)

The median scenario (blue line) reflects the $100 investment to grow approximately $200 after 20 years. This is the most statistically likely result based on the parameters of the simulation.

Best-Case Scenario

The best-case scenario (green line) shows the most optimistic outcome, where the $100 investment grows significantly to about $2,000 after 20 years. This scenario assumes consistently high returns and favorable conditions.

Worst-Case Scenario

The worst-case scenario (red line) illustrates a less favorable outcome where the $100 investment grows minimally, with no growth over the 20 years. This assumes persistently poor returns.

Limitations of the Simulation

The simulation likely assumes returns are drawn from a consistent distribution (normal distribution). In reality, financial markets experience volatility that can deviate significantly from modeled probabilities.

If historical data was used to estimate returns and volatility, the results are only as reliable as the assumption that the future mirrors the past.

The simulation assumes no investor interventions (rebalancing, withdrawals, or additional investments), which can significantly affect outcomes.