# Load packages
# Core
library(tidyverse)
library(tidyquant)
# Source function
source("../00_scripts/simulate_accumulation.R")
Revise the code below.
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "1997-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
Revise the code for weights.
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AGG 0.25
## 2 EEM 0.25
## 3 EFA 0.2
## 4 IJS 0.2
## 5 SPY 0.1
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 240 × 2
## date returns
## <date> <dbl>
## 1 1998-01-30 0.00128
## 2 1998-02-27 0.00670
## 3 1998-03-31 0.00476
## 4 1998-04-30 0.00127
## 5 1998-05-29 -0.00210
## 6 1998-06-30 0.00417
## 7 1998-07-31 -0.00136
## 8 1998-08-31 -0.0152
## 9 1998-09-30 0.00617
## 10 1998-10-30 0.00780
## # ℹ 230 more rows
# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005099139
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.0339302
No need
# Create a vector of 1s as a starting point
sims <- 51
starts <- rep(100, sims) %>%
set_names(paste0("sim", 1:sims))
starts
## sim1 sim2 sim3 sim4 sim5 sim6 sim7 sim8 sim9 sim10 sim11 sim12 sim13
## 100 100 100 100 100 100 100 100 100 100 100 100 100
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26
## 100 100 100 100 100 100 100 100 100 100 100 100 100
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39
## 100 100 100 100 100 100 100 100 100 100 100 100 100
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51
## 100 100 100 100 100 100 100 100 100 100 100 100
# Simulate
monte_carlo_sim_51 <- starts %>%
# Simulate
map_dfc(.x = .,
.f = ~simulate_accumulation(initial_value = .x,
N = 240,
mean_return = mean_port_return,
sd_return = stddev_port_return)) %>%
#Add column month
mutate(month = 1:nrow(.)) %>%
select(month, everything()) %>%
# Rearrange column names
set_names(c("month", names(starts))) %>%
# Transform to long form
pivot_longer(cols = -month, names_to = "sim", values_to = "growth")
monte_carlo_sim_51
## # A tibble: 12,291 × 3
## month sim growth
## <int> <chr> <dbl>
## 1 1 sim1 100
## 2 1 sim2 100
## 3 1 sim3 100
## 4 1 sim4 100
## 5 1 sim5 100
## 6 1 sim6 100
## 7 1 sim7 100
## 8 1 sim8 100
## 9 1 sim9 100
## 10 1 sim10 100
## # ℹ 12,281 more rows
# Find quantiles
monte_carlo_sim_51 %>%
group_by(sim) %>%
summarise(growth = last(growth)) %>%
ungroup() %>%
pull(growth) %>%
quantile(probs = c(0, 0.25, 0.5, 0.75, 1)) %>%
round(2)
## 0% 25% 50% 75% 100%
## 80.99 231.74 323.75 463.79 910.36
Line Plot of Simulations with Max, Median, and Min Line plot with max, median, and min
# Step 1 Summarize data into max, median, and min of last value
sim_summary <- monte_carlo_sim_51 %>%
group_by(sim) %>%
summarize(growth = last(growth)) %>%
ungroup() %>%
summarise(max = max(growth),
median = median(growth),
min = min(growth))
sim_summary
## # A tibble: 1 × 3
## max median min
## <dbl> <dbl> <dbl>
## 1 910. 324. 81.0
# Step 2 Plot
monte_carlo_sim_51 %>%
# Filter for max, median, and min sim
group_by(sim) %>%
filter(last(growth) == sim_summary$max |
last(growth) == sim_summary$median |
last(growth) == sim_summary$min) %>%
ungroup() %>%
# Plot
ggplot(aes(x = month, y = growth, color = sim)) +
geom_line() +
theme(legend.position = "none") +
theme(plot.title = element_text(hjust = 0.5)) +
theme(plot.subtitle = element_text(hjust = 0.5)) +
labs(title = "Simulating growth of $100 over 240 months",
subtitle = "Maximum, Median, Minimum Simulation")
Based on the Monte Carlo simulation results, how much should you expect from your $100 investment after 20 years? What is the best-case scenario? What is the worst-case scenario? What are limitations of this simulation analysis?
The median scenario (blue line) reflects the $100 investment to grow approximately $200 after 20 years. This is the most statistically likely result based on the parameters of the simulation.
The best-case scenario (green line) shows the most optimistic outcome, where the $100 investment grows significantly to about $2,000 after 20 years. This scenario assumes consistently high returns and favorable conditions.
The worst-case scenario (red line) illustrates a less favorable outcome where the $100 investment grows minimally, with no growth over the 20 years. This assumes persistently poor returns.
The simulation likely assumes returns are drawn from a consistent distribution (normal distribution). In reality, financial markets experience volatility that can deviate significantly from modeled probabilities.
If historical data was used to estimate returns and volatility, the results are only as reliable as the assumption that the future mirrors the past.
The simulation assumes no investor interventions (rebalancing, withdrawals, or additional investments), which can significantly affect outcomes.