# Load packages
# Core
library(tidyverse)
library(tidyquant)
# time series
library(timetk)
Simulate future portfolio returns
five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”
market: “SPY”
from 2012-12-31 to 2017-12-31
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AGG 0.25
## 2 EEM 0.25
## 3 EFA 0.2
## 4 IJS 0.2
## 5 SPY 0.1
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0204
## 2 2013-02-28 -0.00239
## 3 2013-03-28 0.0121
## 4 2013-04-30 0.0174
## 5 2013-05-31 -0.0128
## 6 2013-06-28 -0.0247
## 7 2013-07-31 0.0321
## 8 2013-08-30 -0.0224
## 9 2013-09-30 0.0511
## 10 2013-10-31 0.0301
## # ℹ 50 more rows
# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899132
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.02347489
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
## [1] -0.0176876343 0.0263267809 -0.0251221723 -0.0029447707 0.0270746667
## [6] 0.0170174363 0.0176333254 0.0471894844 0.0435182327 0.0182114018
## [11] 0.0310709516 0.0062692098 0.0189507277 0.0448018997 0.0176912393
## [16] 0.0253755395 0.0104504621 0.0417037518 -0.0027198350 -0.0394351580
## [21] 0.0225068594 0.0233432150 0.0087798228 0.0160762443 0.0007009085
## [26] -0.0058032122 0.0337615825 0.0238858685 -0.0008701007 -0.0289764307
## [31] 0.0462759767 -0.0115089304 -0.0137250166 -0.0043613716 -0.0065715599
## [36] 0.0559889208 -0.0307669792 0.0434300028 -0.0069762109 0.0503680622
## [41] 0.0214169080 -0.0050448120 0.0193497380 0.0475846432 0.0357244200
## [46] -0.0447146766 0.0084363270 -0.0144880861 -0.0019736688 0.0128770173
## [51] 0.0140578075 -0.0286434052 -0.0071276603 -0.0075598609 0.0312931837
## [56] 0.0060062294 -0.0104352328 -0.0571062787 0.0095529081 0.0245380118
## [61] -0.0429075244 -0.0286514826 -0.0037187203 0.0341031867 -0.0035324253
## [66] 0.0077593729 -0.0232850464 0.0138663066 0.0454882201 0.0176538158
## [71] 0.0203340613 -0.0140637590 0.0263396588 -0.0364437617 0.0062053995
## [76] -0.0163410920 0.0092574979 -0.0026424693 -0.0259169570 0.0334840194
## [81] 0.0070305766 0.0192456705 0.0327428430 0.0505771131 0.0075899002
## [86] -0.0035677537 0.0263968537 0.0124627581 0.0662605920 0.0291154348
## [91] -0.0305986207 -0.0078928183 -0.0562646367 0.0334443729 0.0104679142
## [96] 0.0324720942 0.0598023725 0.0101280859 0.0020111017 0.0472551662
## [101] 0.0102173066 0.0160286311 0.0121637569 0.0092776604 0.0070463688
## [106] -0.0088695899 0.0113663685 -0.0145216653 0.0054822994 -0.0148734808
## [111] -0.0046355238 -0.0108539927 -0.0084171777 0.0362975229 0.0243946714
## [116] -0.0042345000 0.0034352339 0.0214656443 0.0057230930 -0.0242013564
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 × 1
## returns
## <dbl>
## 1 1
## 2 0.982
## 3 1.03
## 4 0.975
## 5 0.997
## 6 1.03
## 7 1.02
## 8 1.02
## 9 1.05
## 10 1.04
## # ℹ 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
select(growth)
simulated_growth
## # A tibble: 121 × 1
## growth
## <dbl>
## 1 1
## 2 0.982
## 3 1.01
## 4 0.983
## 5 0.980
## 6 1.01
## 7 1.02
## 8 1.04
## 9 1.09
## 10 1.14
## # ℹ 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 10.2081
simulate_accumulation <- function(initial_value, N, mean_return, sd_return) {
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(initial_value, 1 + rnorm(N, mean_return, sd_return)))
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
select(growth)
return(simulated_growth)
}
simulate_accumulation(initial_value = 100, N = 240, mean_return = 0.005, sd_return = 0.01) %>%
tail()
## # A tibble: 6 × 1
## growth
## <dbl>
## 1 335.
## 2 338.
## 3 343.
## 4 347.
## 5 350.
## 6 350.
dump(list = c("simulate_accumulation"),
file = "../00_scripts/simulate_accumulation.R")
simulate_accumulation(initial_value = 100, N = 240, mean_return = 0.005, sd_return = 0.01)
## # A tibble: 241 × 1
## growth
## <dbl>
## 1 100
## 2 100.
## 3 101.
## 4 100.
## 5 103.
## 6 105.
## 7 106.
## 8 107.
## 9 107.
## 10 109.
## # ℹ 231 more rows
simulate_accumulation(initial_value = 100, N = 240, mean_return = 0.005, sd_return = 0.01)
## # A tibble: 241 × 1
## growth
## <dbl>
## 1 100
## 2 101.
## 3 104.
## 4 104.
## 5 104.
## 6 105.
## 7 106.
## 8 105.
## 9 106.
## 10 106.
## # ℹ 231 more rows
simulate_accumulation(initial_value = 100, N = 240, mean_return = 0.005, sd_return = 0.01)
## # A tibble: 241 × 1
## growth
## <dbl>
## 1 100
## 2 98.0
## 3 98.3
## 4 98.5
## 5 98.0
## 6 99.0
## 7 99.4
## 8 102.
## 9 102.
## 10 103.
## # ℹ 231 more rows
# Create a vector of 1s as a starting point
sims <- 51
starts <- rep(1, sims) %>%
set_names(paste0("sim", 1:sims))
starts
## sim1 sim2 sim3 sim4 sim5 sim6 sim7 sim8 sim9 sim10 sim11 sim12 sim13
## 1 1 1 1 1 1 1 1 1 1 1 1 1
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26
## 1 1 1 1 1 1 1 1 1 1 1 1 1
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39
## 1 1 1 1 1 1 1 1 1 1 1 1 1
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51
## 1 1 1 1 1 1 1 1 1 1 1 1
# Simulate
monte_carlo_sim_51 <- starts %>%
# Simulate
map_dfc(.x = .,
.f = ~simulate_accumulation(initial_value = .x,
N = 120,
mean_return = mean_port_return,
sd_return = stddev_port_return)) %>%
#Add column month
mutate(month = 1:nrow(.)) %>%
select(month, everything()) %>%
# Rearrange column names
set_names(c("month", names(starts))) %>%
# Transform to long form
pivot_longer(cols = -month, names_to = "sim", values_to = "growth")
monte_carlo_sim_51
## # A tibble: 6,171 × 3
## month sim growth
## <int> <chr> <dbl>
## 1 1 sim1 1
## 2 1 sim2 1
## 3 1 sim3 1
## 4 1 sim4 1
## 5 1 sim5 1
## 6 1 sim6 1
## 7 1 sim7 1
## 8 1 sim8 1
## 9 1 sim9 1
## 10 1 sim10 1
## # ℹ 6,161 more rows
# Find quantiles
monte_carlo_sim_51 %>%
group_by(sim) %>%
summarise(growth = last(growth)) %>%
ungroup() %>%
pull(growth) %>%
quantile(probs = c(0, 0.25, 0.5, 0.75, 1)) %>%
round(2)
## 0% 25% 50% 75% 100%
## 1.00 1.76 2.05 2.38 3.53
monte_carlo_sim_51 %>%
ggplot(aes(x = month, y = growth, color = sim)) +
geom_line() +
theme(legend.position = "none") +
labs(title = "Simulating growth of $1 over 120 months")
Line plot with max, median, and min
# Step 1 Summarize data into max, median, and min of last value
sim_summary <- monte_carlo_sim_51 %>%
group_by(sim) %>%
summarize(growth = last(growth)) %>%
ungroup() %>%
summarise(max = max(growth),
median = median(growth),
min = min(growth))
sim_summary
## # A tibble: 1 × 3
## max median min
## <dbl> <dbl> <dbl>
## 1 3.53 2.05 1.00
# Step 2 Plot
monte_carlo_sim_51 %>%
# Filter for max, median, and min sim
group_by(sim) %>%
filter(last(growth) == sim_summary$max |
last(growth) == sim_summary$median |
last(growth) == sim_summary$min) %>%
ungroup() %>%
# Plot
ggplot(aes(x = month, y = growth, color = sim)) +
geom_line() +
theme(legend.position = "none") +
theme(plot.title = element_text(hjust = 0.5)) +
theme(plot.subtitle = element_text(hjust = 0.5)) +
labs(title = "Simulating growth of $1 over 120 months",
subtitle = "Maximum, Median, Minimum Simulation")