Set up

# Load necessary libraries
library(tidymodels)   # For modeling and evaluation
## Warning: package 'tidymodels' was built under R version 4.3.3
## ── Attaching packages ────────────────────────────────────── tidymodels 1.2.0 ──
## ✔ broom        1.0.5     ✔ recipes      1.1.0
## ✔ dials        1.3.0     ✔ rsample      1.2.1
## ✔ dplyr        1.1.4     ✔ tibble       3.2.1
## ✔ ggplot2      3.5.1     ✔ tidyr        1.3.1
## ✔ infer        1.0.7     ✔ tune         1.2.1
## ✔ modeldata    1.4.0     ✔ workflows    1.1.4
## ✔ parsnip      1.2.1     ✔ workflowsets 1.1.0
## ✔ purrr        1.0.2     ✔ yardstick    1.3.1
## Warning: package 'dials' was built under R version 4.3.3
## Warning: package 'ggplot2' was built under R version 4.3.3
## Warning: package 'infer' was built under R version 4.3.3
## Warning: package 'modeldata' was built under R version 4.3.3
## Warning: package 'parsnip' was built under R version 4.3.3
## Warning: package 'recipes' was built under R version 4.3.3
## Warning: package 'rsample' was built under R version 4.3.3
## Warning: package 'tune' was built under R version 4.3.3
## Warning: package 'workflows' was built under R version 4.3.3
## Warning: package 'workflowsets' was built under R version 4.3.3
## Warning: package 'yardstick' was built under R version 4.3.3
## ── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ──
## ✖ purrr::discard() masks scales::discard()
## ✖ dplyr::filter()  masks stats::filter()
## ✖ dplyr::lag()     masks stats::lag()
## ✖ recipes::step()  masks stats::step()
## • Use tidymodels_prefer() to resolve common conflicts.
library(h2o)          # For H2O AutoML
## Warning: package 'h2o' was built under R version 4.3.3
## 
## ----------------------------------------------------------------------
## 
## Your next step is to start H2O:
##     > h2o.init()
## 
## For H2O package documentation, ask for help:
##     > ??h2o
## 
## After starting H2O, you can use the Web UI at http://localhost:54321
## For more information visit https://docs.h2o.ai
## 
## ----------------------------------------------------------------------
## 
## Attaching package: 'h2o'
## The following objects are masked from 'package:stats':
## 
##     cor, sd, var
## The following objects are masked from 'package:base':
## 
##     %*%, %in%, &&, ||, apply, as.factor, as.numeric, colnames,
##     colnames<-, ifelse, is.character, is.factor, is.numeric, log,
##     log10, log1p, log2, round, signif, trunc
library(lubridate)    # For date handling
## 
## Attaching package: 'lubridate'
## The following objects are masked from 'package:h2o':
## 
##     day, hour, month, week, year
## The following objects are masked from 'package:base':
## 
##     date, intersect, setdiff, union
library(dplyr)        # For data manipulation
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ forcats 1.0.0     ✔ stringr 1.5.1
## ✔ readr   2.1.5
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ readr::col_factor() masks scales::col_factor()
## ✖ lubridate::day()    masks h2o::day()
## ✖ purrr::discard()    masks scales::discard()
## ✖ dplyr::filter()     masks stats::filter()
## ✖ stringr::fixed()    masks recipes::fixed()
## ✖ lubridate::hour()   masks h2o::hour()
## ✖ dplyr::lag()        masks stats::lag()
## ✖ lubridate::month()  masks h2o::month()
## ✖ readr::spec()       masks yardstick::spec()
## ✖ lubridate::week()   masks h2o::week()
## ✖ lubridate::year()   masks h2o::year()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
# Initialize H2O
h2o.init()
## 
## H2O is not running yet, starting it now...
## 
## Note:  In case of errors look at the following log files:
##     C:\Users\nilss\AppData\Local\Temp\RtmpcPJCnz\file640c430f4550/h2o_nilss_started_from_r.out
##     C:\Users\nilss\AppData\Local\Temp\RtmpcPJCnz\file640c2859190b/h2o_nilss_started_from_r.err
## 
## 
## Starting H2O JVM and connecting:  Connection successful!
## 
## R is connected to the H2O cluster: 
##     H2O cluster uptime:         4 seconds 876 milliseconds 
##     H2O cluster timezone:       America/New_York 
##     H2O data parsing timezone:  UTC 
##     H2O cluster version:        3.44.0.3 
##     H2O cluster version age:    11 months and 16 days 
##     H2O cluster name:           H2O_started_from_R_nilss_xge160 
##     H2O cluster total nodes:    1 
##     H2O cluster total memory:   3.92 GB 
##     H2O cluster total cores:    8 
##     H2O cluster allowed cores:  8 
##     H2O cluster healthy:        TRUE 
##     H2O Connection ip:          localhost 
##     H2O Connection port:        54321 
##     H2O Connection proxy:       NA 
##     H2O Internal Security:      FALSE 
##     R Version:                  R version 4.3.2 (2023-10-31 ucrt)
## Warning in h2o.clusterInfo(): 
## Your H2O cluster version is (11 months and 16 days) old. There may be a newer version available.
## Please download and install the latest version from: https://h2o-release.s3.amazonaws.com/h2o/latest_stable.html

1. Load and Preprocess Your Dataset

data <- read_csv("../00_data/data_wrangled/data_clean_apply.csv") %>%
    mutate(across(where(is.character), factor))  # Convert character columns to factors
## New names:
## Rows: 501 Columns: 10
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," chr
## (1): still_there dbl (8): ...1, fyear, co_per_rol, departure_code,
## ceo_dismissal, tenure_no_... date (1): leftofc
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `` -> `...1`

2. Splitting Data into Training and Testing Sets

set.seed(123) # For reproducibility
data_split <- initial_split(data, prop = 0.8, strata = "ceo_dismissal")
train_data <- training(data_split)
test_data <- testing(data_split)

Convert data to H2O objects

train_h2o <- as.h2o(train_data)
## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
test_h2o <- as.h2o(test_data)
## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

3. H2O AutoML Training

Define response and predictor variables

response <- "ceo_dismissal"  # Replace with the actual name of your target variable
predictors <- setdiff(names(train_data), response)

Train H2O AutoML model

aml <- h2o.automl(
  x = predictors,
  y = response,
  training_frame = train_h2o,
  max_models = 10,        # Limit to 10 models for quicker results
  seed = 123,
  balance_classes = TRUE  # Helps with imbalanced datasets
)
## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |==                                                                    |   3%
## 20:59:55.429: AutoML: XGBoost is not available; skipping it.
## 20:59:55.534: _response param, We have detected that your response column has only 2 unique values (0/1). If you wish to train a binary model instead of a regression model, convert your target column to categorical before training.
  |                                                                            
  |==========                                                            |  15%
## 21:00:01.542: _response param, We have detected that your response column has only 2 unique values (0/1). If you wish to train a binary model instead of a regression model, convert your target column to categorical before training.
## 21:00:02.403: _response param, We have detected that your response column has only 2 unique values (0/1). If you wish to train a binary model instead of a regression model, convert your target column to categorical before training.
## 21:00:03.36: _response param, We have detected that your response column has only 2 unique values (0/1). If you wish to train a binary model instead of a regression model, convert your target column to categorical before training.
## 21:00:03.673: _response param, We have detected that your response column has only 2 unique values (0/1). If you wish to train a binary model instead of a regression model, convert your target column to categorical before training.
## 21:00:04.91: _response param, We have detected that your response column has only 2 unique values (0/1). If you wish to train a binary model instead of a regression model, convert your target column to categorical before training.
## 21:00:04.455: _response param, We have detected that your response column has only 2 unique values (0/1). If you wish to train a binary model instead of a regression model, convert your target column to categorical before training.
## 21:00:04.943: _response param, We have detected that your response column has only 2 unique values (0/1). If you wish to train a binary model instead of a regression model, convert your target column to categorical before training.
## 21:00:05.568: _response param, We have detected that your response column has only 2 unique values (0/1). If you wish to train a binary model instead of a regression model, convert your target column to categorical before training.
## 21:00:05.745: DeepLearning_1_AutoML_1_20241206_205955 [DeepLearning def_1] failed: water.exceptions.H2OModelBuilderIllegalArgumentException: Illegal argument(s) for DeepLearning model: DeepLearning_1_AutoML_1_20241206_205955_cv_1.  Details: ERRR on field: _balance_classes: balance_classes requires classification.
## 
  |                                                                            
  |=================================================                     |  71%
  |                                                                            
  |============================================================          |  85%
## 21:00:09.134: _response param, We have detected that your response column has only 2 unique values (0/1). If you wish to train a binary model instead of a regression model, convert your target column to categorical before training.
## 21:00:09.858: _response param, We have detected that your response column has only 2 unique values (0/1). If you wish to train a binary model instead of a regression model, convert your target column to categorical before training.
  |                                                                            
  |======================================================================| 100%

4. Evaluate the Leader Model

View the AutoML leaderboard

print(aml@leaderboard)
##                                                  model_id       rmse
## 1                          GLM_1_AutoML_1_20241206_205955 0.03099643
## 2 StackedEnsemble_BestOfFamily_1_AutoML_1_20241206_205955 0.03374476
## 3    StackedEnsemble_AllModels_1_AutoML_1_20241206_205955 0.03833475
## 4                          GBM_5_AutoML_1_20241206_205955 0.05828468
## 5                          DRF_1_AutoML_1_20241206_205955 0.07193362
## 6             GBM_grid_1_AutoML_1_20241206_205955_model_5 0.07238425
##            mse         mae      rmsle mean_residual_deviance
## 1 0.0009607787 0.006888772 0.02328145           0.0009607787
## 2 0.0011387086 0.007272514 0.02600179           0.0011387086
## 3 0.0014695532 0.008074401 0.02823698           0.0014695532
## 4 0.0033971037 0.008337298 0.03846539           0.0033971037
## 5 0.0051744457 0.011430993 0.04878225           0.0051744457
## 6 0.0052394797 0.014620759 0.04907490           0.0052394797
## 
## [20 rows x 6 columns]

Get the best model from AutoML

best_model <- aml@leader

5. Make Predictions on the Test Set

Predict on test data

predictions <- h2o.predict(best_model, test_h2o)
## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
## Warning in doTryCatch(return(expr), name, parentenv, handler): Test/Validation
## dataset column 'still_there' has levels not trained on: ["12/8//2020",
## "12feb2020", "18jan2021"]

Convert H2O predictions to a data frame

predictions_df <- as.data.frame(predictions)

test_data <- as.data.frame(test_h2o)

# test_data <- test_data %>%
    # mutate(
    #  predicted_prob = predictions_df$p1,  # Use column 'p1' for the probability of attrition
    #  predicted_class = if_else(predicted_prob > 0.5, 1, 0))

6. Evaluate Model Performance

Confusion Matrix

conf_matrix <- conf_mat( truth = factor(test_data[[response]]), estimate = factor(test_data$predicted_class) )

Calculate accuracy and other metrics

metrics <- conf_matrix %>% summary() %>% filter(.metric %in% c(“accuracy”, “precision”, “recall”, “f_meas”)) print(metrics)

7. Shut Down H2O

h2o.shutdown(prompt = FALSE)