data("mtcars")
mean(mtcars$mpg)
## [1] 20.09062
median(mtcars$mpg)
## [1] 19.2
sd(mtcars$mpg)
## [1] 6.026948
boxplot(mpg ~ cyl, data = mtcars,
main = "Boxplot MPG berdasarkan Jumlah Silinder (Cyl)",
xlab = "Jumlah Silinder (Cyl)",
ylab = "Miles Per Gallon (MPG)",
col = "white")
hist(mtcars$hp,
main = "Histogram of Horsepower with Density Curve",
xlab = "Horsepower (hp)",
col = "white",
border = "black",
freq = FALSE)
lines(density(mtcars$hp), col = "black", lwd = 2)
berdasarkan histogram dan garis densitas, distribusi hp terlihat tidak simetris dan cenderung positively skewed (skewed to the right). Artinya, ada beberapa nilai hp yang sangat tinggi yang memengaruhi distribusi.
data(iris)
anova_result <- aov(Sepal.Length ~ Species, data = iris)
summary(anova_result)
## Df Sum Sq Mean Sq F value Pr(>F)
## Species 2 63.21 31.606 119.3 <2e-16 ***
## Residuals 147 38.96 0.265
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
setosa <- iris$Petal.Length[iris$Species == "setosa"]
versicolor <- iris$Petal.Length[iris$Species == "versicolor"]
t_test_result <- t.test(setosa, versicolor)
print(t_test_result)
##
## Welch Two Sample t-test
##
## data: setosa and versicolor
## t = -39.493, df = 62.14, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.939618 -2.656382
## sample estimates:
## mean of x mean of y
## 1.462 4.260
Berdasarkan hasil p-value (2.2 ≥ 0.05), maka tidak ada perbedaan signifikan antara panjang petal spesies tersebut.
model <- lm(mpg ~ wt, data = mtcars)
summary(model)
##
## Call:
## lm(formula = mpg ~ wt, data = mtcars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5432 -2.3647 -0.1252 1.4096 6.8727
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 37.2851 1.8776 19.858 < 2e-16 ***
## wt -5.3445 0.5591 -9.559 1.29e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.046 on 30 degrees of freedom
## Multiple R-squared: 0.7528, Adjusted R-squared: 0.7446
## F-statistic: 91.38 on 1 and 30 DF, p-value: 1.294e-10
plot(mtcars$wt, mtcars$mpg,
main = "Regresi Linear Sederhana: MPG ~ Weight",
xlab = "Berat Mobil (wt)",
ylab = "Miles Per Gallon (mpg)",
pch = 19,
col = "black")
abline(model, col = "black", lwd = 2)