# Load packages

# Core
library(tidyverse)
library(tidyquant)
library(readr)

# Time series
library(lubridate)
library(tibbletime)

# modeling
library(broom)

Goal

Examine how each asset contributes to portfolio standard deviation. This is to ensure that our risk is not concentrated in any one asset.

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Component Contribution Step-by-Step

Refresh your memory on covariance with this video. Click this link Refresh your memory on matrix multiplication. Click this link

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG          EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062310813 -0.002935574  0.0366062100  0.052132878  4.992324e-02
## 2013-02-28  0.0058912009 -0.023105233 -0.0129694779  0.016175880  1.267810e-02
## 2013-03-28  0.0009848334 -0.010234896  0.0129694779  0.040257984  3.726767e-02
## 2013-04-30  0.0096392456  0.012084677  0.0489675453  0.001222668  1.903030e-02
## 2013-05-31 -0.0202138448 -0.049483496 -0.0306555133  0.041976078  2.333538e-02
## 2013-06-28 -0.0157784487 -0.054728016 -0.0271443833 -0.001402752 -1.343423e-02
## 2013-07-31  0.0026879115  0.013159634  0.0518602606  0.063541428  5.038587e-02
## 2013-08-30 -0.0082984921 -0.025705798 -0.0197462012 -0.034743738 -3.045102e-02
## 2013-09-30  0.0111440498  0.069588841  0.0753384162  0.063873739  3.115587e-02
## 2013-10-31  0.0082920313  0.040861183  0.0320816387  0.034234022  4.526657e-02
## 2013-11-29 -0.0025105158 -0.002593914  0.0054497017  0.041661174  2.920672e-02
## 2013-12-31 -0.0055821742 -0.004074132  0.0215281336  0.012891882  2.559617e-02
## 2014-01-31  0.0152913059 -0.090322840 -0.0534131388 -0.035775164 -3.588454e-02
## 2014-02-28  0.0037569374  0.033220355  0.0595049216  0.045257575  4.451059e-02
## 2014-03-31 -0.0014812914  0.038022056 -0.0046026436  0.013315273  8.260921e-03
## 2014-04-30  0.0081832033  0.007772509  0.0165291421 -0.023184518  6.927763e-03
## 2014-05-30  0.0117214984  0.029091191  0.0158285784  0.006205465  2.294099e-02
## 2014-06-30 -0.0005760467  0.023733724  0.0091654091  0.037718876  2.043469e-02
## 2014-07-31 -0.0025122598  0.013556009 -0.0263797076 -0.052009437 -1.352864e-02
## 2014-08-29  0.0114313080  0.027904572  0.0018005749  0.043657805  3.870492e-02
## 2014-09-30 -0.0061678908 -0.080856901 -0.0395986457 -0.061260619 -1.389274e-02
## 2014-10-31  0.0105846842  0.014096566 -0.0026548113  0.068875056  2.327779e-02
## 2014-11-28  0.0065486013 -0.015541296  0.0006252305  0.004773331  2.710158e-02
## 2014-12-31  0.0014749154 -0.040442465 -0.0407466515  0.025296135 -2.539838e-03
## 2015-01-30  0.0203158784 -0.006895499  0.0062264229 -0.054628122 -3.007681e-02
## 2015-02-27 -0.0089886336  0.043136254  0.0614505450  0.056914939  5.468197e-02
## 2015-03-31  0.0037406581 -0.015086134 -0.0143887084  0.010156236 -1.583053e-02
## 2015-04-30 -0.0032326370  0.066281182  0.0358165849 -0.018417892  9.785779e-03
## 2015-05-29 -0.0043843653 -0.041910788  0.0019527236  0.007509950  1.277422e-02
## 2015-06-30 -0.0108255046 -0.029746956 -0.0316788276  0.004171296 -2.052127e-02
## 2015-07-31  0.0085846666 -0.065178134  0.0201143312 -0.027375367  2.233798e-02
## 2015-08-31 -0.0033637353 -0.092512342 -0.0771521747 -0.047268264 -6.288642e-02
## 2015-09-30  0.0080816190 -0.031824994 -0.0451948928 -0.038464796 -2.584741e-02
## 2015-10-30  0.0006852449  0.061808242  0.0640258868  0.063589794  8.163514e-02
## 2015-11-30 -0.0038980454 -0.025560338 -0.0075558800  0.024415337  3.648277e-03
## 2015-12-31 -0.0019188111 -0.038947105 -0.0235951964 -0.052157142 -1.743339e-02
## 2016-01-29  0.0123294448 -0.051636605 -0.0567577412 -0.060306947 -5.106884e-02
## 2016-02-29  0.0088324755 -0.008211831 -0.0339139044  0.020605039 -8.262107e-04
## 2016-03-31  0.0087080528  0.121879078  0.0637458653  0.089910582  6.510041e-02
## 2016-04-29  0.0025465531  0.004079416  0.0219748450  0.021044310  3.933136e-03
## 2016-05-31  0.0001354825 -0.037628577 -0.0008558782  0.004397115  1.686872e-02
## 2016-06-30  0.0191666271  0.044582339 -0.0244913641  0.008292177  3.469800e-03
## 2016-07-29  0.0054299649  0.052442034  0.0390000248  0.049348308  3.582206e-02
## 2016-08-31 -0.0021568371  0.008798788  0.0053268628  0.011261250  1.196332e-03
## 2016-09-30  0.0005163371  0.024872631  0.0132791585  0.008614597  5.845891e-05
## 2016-10-31 -0.0082055791 -0.008312009 -0.0224037499 -0.038134931 -1.748921e-02
## 2016-11-30 -0.0259893794 -0.045161835 -0.0179743989  0.125246501  3.617606e-02
## 2016-12-30  0.0025385048 -0.002529946  0.0267029429  0.031491738  2.006917e-02
## 2017-01-31  0.0021257480  0.064431335  0.0323817146 -0.012143970  1.773653e-02
## 2017-02-28  0.0064379246  0.017258017  0.0118364721  0.013428564  3.853911e-02
## 2017-03-31 -0.0005530665  0.036188982  0.0318057896 -0.006532773  1.249233e-03
## 2017-04-28  0.0090295817  0.016866285  0.0239521397  0.005107589  9.876945e-03
## 2017-05-31  0.0068470655  0.028059986  0.0348101875 -0.022862441  1.401452e-02
## 2017-06-30 -0.0001825937  0.009223657  0.0029560702  0.029151811  6.354404e-03
## 2017-07-31  0.0033343112  0.056594548  0.0261878661  0.007481677  2.034600e-02
## 2017-08-31  0.0093689965  0.023243973 -0.0004485032 -0.027564918  2.913587e-03
## 2017-09-29 -0.0057321835 -0.000446495  0.0233427783  0.082321900  1.994907e-02
## 2017-10-31  0.0009779748  0.032278575  0.0166538670  0.005915972  2.329055e-02
## 2017-11-30 -0.0014839375 -0.003897049  0.0068697711  0.036913066  3.010826e-02
## 2017-12-29  0.0047408527  0.036925493  0.0133985362 -0.003731136  1.205480e-02
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)

covariance_matrix
##               AGG          EEM          EFA           IJS           SPY
## AGG  7.398452e-05 0.0001042102 4.178272e-05 -7.811836e-05 -9.031213e-06
## EEM  1.042102e-04 0.0017547113 1.039016e-03  6.437734e-04  6.795434e-04
## EFA  4.178272e-05 0.0010390163 1.064235e-03  6.490307e-04  6.975413e-04
## IJS -7.811836e-05 0.0006437734 6.490307e-04  1.565453e-03  8.290254e-04
## SPY -9.031213e-06 0.0006795434 6.975413e-04  8.290254e-04  7.408301e-04
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
w <- c(0.25, 0.25, 0.2, 0.2, 0.1)

sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
sd_portfolio
##            [,1]
## [1,] 0.02347492
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
##               AGG         EEM         EFA         IJS         SPY
## [1,] 0.0003874181 0.009257143 0.005815628 0.005684477 0.002330251
rowSums(component_contribution)
## [1] 0.02347492
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
    round(3) %>%
    as_tibble()

component_percentages
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
component_percentages %>%

    as_tibble() %>%
    gather(key = "asset", value = "contribution")
## # A tibble: 5 × 2
##   asset contribution
##   <chr>        <dbl>
## 1 AGG          0.017
## 2 EEM          0.394
## 3 EFA          0.248
## 4 IJS          0.242
## 5 SPY          0.099

4 Component Contribution with a Custom Function

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG          EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062310813 -0.002935574  0.0366062100  0.052132878  4.992324e-02
## 2013-02-28  0.0058912009 -0.023105233 -0.0129694779  0.016175880  1.267810e-02
## 2013-03-28  0.0009848334 -0.010234896  0.0129694779  0.040257984  3.726767e-02
## 2013-04-30  0.0096392456  0.012084677  0.0489675453  0.001222668  1.903030e-02
## 2013-05-31 -0.0202138448 -0.049483496 -0.0306555133  0.041976078  2.333538e-02
## 2013-06-28 -0.0157784487 -0.054728016 -0.0271443833 -0.001402752 -1.343423e-02
## 2013-07-31  0.0026879115  0.013159634  0.0518602606  0.063541428  5.038587e-02
## 2013-08-30 -0.0082984921 -0.025705798 -0.0197462012 -0.034743738 -3.045102e-02
## 2013-09-30  0.0111440498  0.069588841  0.0753384162  0.063873739  3.115587e-02
## 2013-10-31  0.0082920313  0.040861183  0.0320816387  0.034234022  4.526657e-02
## 2013-11-29 -0.0025105158 -0.002593914  0.0054497017  0.041661174  2.920672e-02
## 2013-12-31 -0.0055821742 -0.004074132  0.0215281336  0.012891882  2.559617e-02
## 2014-01-31  0.0152913059 -0.090322840 -0.0534131388 -0.035775164 -3.588454e-02
## 2014-02-28  0.0037569374  0.033220355  0.0595049216  0.045257575  4.451059e-02
## 2014-03-31 -0.0014812914  0.038022056 -0.0046026436  0.013315273  8.260921e-03
## 2014-04-30  0.0081832033  0.007772509  0.0165291421 -0.023184518  6.927763e-03
## 2014-05-30  0.0117214984  0.029091191  0.0158285784  0.006205465  2.294099e-02
## 2014-06-30 -0.0005760467  0.023733724  0.0091654091  0.037718876  2.043469e-02
## 2014-07-31 -0.0025122598  0.013556009 -0.0263797076 -0.052009437 -1.352864e-02
## 2014-08-29  0.0114313080  0.027904572  0.0018005749  0.043657805  3.870492e-02
## 2014-09-30 -0.0061678908 -0.080856901 -0.0395986457 -0.061260619 -1.389274e-02
## 2014-10-31  0.0105846842  0.014096566 -0.0026548113  0.068875056  2.327779e-02
## 2014-11-28  0.0065486013 -0.015541296  0.0006252305  0.004773331  2.710158e-02
## 2014-12-31  0.0014749154 -0.040442465 -0.0407466515  0.025296135 -2.539838e-03
## 2015-01-30  0.0203158784 -0.006895499  0.0062264229 -0.054628122 -3.007681e-02
## 2015-02-27 -0.0089886336  0.043136254  0.0614505450  0.056914939  5.468197e-02
## 2015-03-31  0.0037406581 -0.015086134 -0.0143887084  0.010156236 -1.583053e-02
## 2015-04-30 -0.0032326370  0.066281182  0.0358165849 -0.018417892  9.785779e-03
## 2015-05-29 -0.0043843653 -0.041910788  0.0019527236  0.007509950  1.277422e-02
## 2015-06-30 -0.0108255046 -0.029746956 -0.0316788276  0.004171296 -2.052127e-02
## 2015-07-31  0.0085846666 -0.065178134  0.0201143312 -0.027375367  2.233798e-02
## 2015-08-31 -0.0033637353 -0.092512342 -0.0771521747 -0.047268264 -6.288642e-02
## 2015-09-30  0.0080816190 -0.031824994 -0.0451948928 -0.038464796 -2.584741e-02
## 2015-10-30  0.0006852449  0.061808242  0.0640258868  0.063589794  8.163514e-02
## 2015-11-30 -0.0038980454 -0.025560338 -0.0075558800  0.024415337  3.648277e-03
## 2015-12-31 -0.0019188111 -0.038947105 -0.0235951964 -0.052157142 -1.743339e-02
## 2016-01-29  0.0123294448 -0.051636605 -0.0567577412 -0.060306947 -5.106884e-02
## 2016-02-29  0.0088324755 -0.008211831 -0.0339139044  0.020605039 -8.262107e-04
## 2016-03-31  0.0087080528  0.121879078  0.0637458653  0.089910582  6.510041e-02
## 2016-04-29  0.0025465531  0.004079416  0.0219748450  0.021044310  3.933136e-03
## 2016-05-31  0.0001354825 -0.037628577 -0.0008558782  0.004397115  1.686872e-02
## 2016-06-30  0.0191666271  0.044582339 -0.0244913641  0.008292177  3.469800e-03
## 2016-07-29  0.0054299649  0.052442034  0.0390000248  0.049348308  3.582206e-02
## 2016-08-31 -0.0021568371  0.008798788  0.0053268628  0.011261250  1.196332e-03
## 2016-09-30  0.0005163371  0.024872631  0.0132791585  0.008614597  5.845891e-05
## 2016-10-31 -0.0082055791 -0.008312009 -0.0224037499 -0.038134931 -1.748921e-02
## 2016-11-30 -0.0259893794 -0.045161835 -0.0179743989  0.125246501  3.617606e-02
## 2016-12-30  0.0025385048 -0.002529946  0.0267029429  0.031491738  2.006917e-02
## 2017-01-31  0.0021257480  0.064431335  0.0323817146 -0.012143970  1.773653e-02
## 2017-02-28  0.0064379246  0.017258017  0.0118364721  0.013428564  3.853911e-02
## 2017-03-31 -0.0005530665  0.036188982  0.0318057896 -0.006532773  1.249233e-03
## 2017-04-28  0.0090295817  0.016866285  0.0239521397  0.005107589  9.876945e-03
## 2017-05-31  0.0068470655  0.028059986  0.0348101875 -0.022862441  1.401452e-02
## 2017-06-30 -0.0001825937  0.009223657  0.0029560702  0.029151811  6.354404e-03
## 2017-07-31  0.0033343112  0.056594548  0.0261878661  0.007481677  2.034600e-02
## 2017-08-31  0.0093689965  0.023243973 -0.0004485032 -0.027564918  2.913587e-03
## 2017-09-29 -0.0057321835 -0.000446495  0.0233427783  0.082321900  1.994907e-02
## 2017-10-31  0.0009779748  0.032278575  0.0166538670  0.005915972  2.329055e-02
## 2017-11-30 -0.0014839375 -0.003897049  0.0068697711  0.036913066  3.010826e-02
## 2017-12-29  0.0047408527  0.036925493  0.0133985362 -0.003731136  1.205480e-02
calculate_component_contribution <- function(.data, w) {
    
    # Covariance of asset returns
    covariance_matrix <- cov(.data)
    
    covariance_matrix
    
    # Standard deviation of portfolio
    # Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
    sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
    
    
    # Component contribution
    # Similar to the formula for sd_portfolio
    # Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
    component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
    component_contribution
    

    # Component contribution in percentage
    component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
        round(3) %>%
        as_tibble()
    
    return(component_percentages)
    
    
}

asset_returns_wide_tbl %>% calculate_component_contribution(w = c(.25, .25, .2, .2, .1))
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099

5 Visualizing Component Contribution

column chart of component contribution

plot_data <- asset_returns_wide_tbl %>% 
    
    calculate_component_contribution(w = c(.25, .25, .2, .2, .1)) %>% 
    
    # Transform to long form 
    pivot_longer(cols = everything(), names_to = "Asset", values_to = "Contribution")

plot_data %>% 
    
    ggplot(aes(x = Asset, y = Contribution)) + 
    geom_col(fill = "cornflowerblue") + 
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) + 
    theme(plot.title = element_text(hjust = 0.5)) +
    labs(title = "Percent Contribution to Portfolio Volitility")

6 Rolling Component Contribution

column chart of component contribution and weight

plot_data <- asset_returns_wide_tbl %>% 
    
    calculate_component_contribution(w = c(.25, .25, .2, .2, .1)) %>% 
    
    # Transform to long form 
    pivot_longer(cols = everything(), names_to = "Asset", values_to = "Contribution") %>% 
    
    # Add weights 
    add_column(weight = c(.25, .25, .2, .2, .1)) %>%
    
    # Transform to long 
    pivot_longer(cols = c(Contribution, weight), names_to = "type", values_to = "value")

plot_data %>% 
    
    ggplot(aes(x = Asset, y = value, fill = type)) + 
    geom_col(position = "dodge") + 
   
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) + 
    scale_fill_tq() +
    theme(plot.title = element_text(hjust = 0.5)) +
    theme_tq() +
    
    labs(title = "Percent Contribution to Portfolio Volitility and Weight", y = "Percent", 
         x = NULL)