Importing Data (Indonesia tanpa Pulau Papua)

##       X1   X2    X3    X4    X5    X6    X7    X8    X9   X10   X11   X12   X13
## 1  99.17 1.52  9.89 66.23 14.38 98.97 84.85 71.70 99.08 94.55 74.46 99.43 97.72
## 2  99.31 0.79 10.07 56.10 13.48 97.95 82.09 68.67 98.75 94.35 74.43 99.51 96.76
## 3  99.18 0.63  9.59 77.31 14.11 98.89 80.22 69.18 95.81 90.65 68.64 99.76 96.79
## 4  98.16 0.75  9.60 66.88 13.30 98.13 80.76 64.81 98.09 90.52 67.79 99.65 95.89
## 5  98.73 1.70  9.16 62.84 13.13 99.33 80.23 60.60 97.76 89.35 66.62 99.49 96.01
## 6  97.89 1.16  8.90 68.64 12.63 98.12 79.12 61.24 97.58 87.95 64.81 99.41 95.27
## 7  97.33 1.92  9.35 59.83 13.74 98.61 81.08 67.09 97.10 89.25 63.41 99.42 97.91
## 8  98.24 2.42  8.72 59.25 12.77 99.22 80.64 62.84 98.67 87.67 64.54 99.61 95.93
## 9  99.05 1.67  8.66 77.50 12.31 98.11 77.00 60.72 96.01 87.11 68.96 99.51 93.20
## 10 99.69 0.86 10.52 62.52 13.05 99.29 86.78 74.11 97.92 95.51 78.97 99.29 99.07
## 11 98.51 0.28 11.42 70.99 13.33 98.44 84.95 60.81 98.66 95.85 88.10 99.49 98.17
## 12 94.34 1.36  9.16 60.02 12.68 98.20 83.61 59.01 99.09 91.42 66.47 99.40 95.75
## 13 95.59 5.18  8.44 64.40 12.85 98.46 81.56 61.46 98.42 90.64 58.35 99.57 97.08
## 14 93.70 4.12 10.16 85.09 15.66 99.36 85.62 76.37 98.95 97.02 89.69 99.63 98.88
## 15 98.23 5.83  8.53 75.18 13.38 98.04 83.91 62.59 98.78 90.74 68.65 99.28 97.64
## 16 95.61 1.62  9.48 52.50 13.09 97.97 85.43 60.42 97.15 90.86 70.07 99.43 96.65
## 17 89.11 4.03  9.74 62.70 13.97 97.77 84.78 75.60 98.43 93.03 76.51 99.61 97.95
## 18 95.11 9.79  8.39 66.32 13.22 98.76 84.03 68.04 98.11 92.95 63.66 99.46 97.95
## 19 94.79 4.37  8.31 60.53 12.67 95.98 73.47 58.15 93.41 82.48 43.46 98.62 94.89
## 20 99.03 4.72  8.17 67.08 12.76 97.70 70.85 54.76 95.33 81.56 55.58 98.81 92.92
## 21 98.37 0.92  9.07 66.68 12.86 99.05 79.07 55.63 97.47 88.92 63.93 99.13 95.21
## 22 99.01 1.49  8.95 71.29 14.02 99.14 77.44 59.83 95.99 88.19 68.35 99.30 94.12
## 23 97.78 0.89 10.17 68.77 13.20 98.53 83.36 69.89 97.88 94.85 73.63 99.64 98.71
## 24 99.79 2.02  9.53 65.39 12.96 94.73 80.53 66.70 96.41 88.08 59.50 99.22 96.96
## 25 98.14 0.21  9.94 59.15 13.33 95.68 76.56 63.86 96.18 92.07 67.57 99.34 95.00
## 26 93.83 1.70  9.22 63.94 13.54 93.31 76.80 66.18 97.56 90.05 55.69 98.34 93.13
## 27 96.03 5.62  9.12 86.74 13.70 98.41 77.98 60.57 98.37 88.74 67.41 99.49 93.22
## 28 98.49 3.57  9.62 67.53 13.16 98.48 76.54 64.00 97.83 89.55 68.28 99.20 95.00
## 29 94.33 1.45  8.48 70.39 12.88 98.69 73.55 60.18 93.69 83.71 46.19 98.69 91.85
## 30 99.47 5.10  8.48 62.73 14.08 95.92 72.39 61.17 95.13 84.04 54.79 98.31 89.47
## 31 98.81 0.48 10.38 63.97 13.74 97.27 78.58 66.16 98.69 93.90 75.01 99.59 97.97
## 32 97.84 1.08  9.61 57.00 13.34 97.36 78.53 65.75 98.30 93.46 64.61 99.12 97.51
##      X14   X15
## 1  83.41 33.10
## 2  79.25 28.61
## 3  84.33 38.08
## 4  78.15 30.07
## 5  72.46 23.98
## 6  71.71 19.79
## 7  79.57 30.74
## 8  71.74 21.66
## 9  69.53 17.59
## 10 84.97 20.51
## 11 72.50 26.52
## 12 68.58 24.72
## 13 70.87 24.59
## 14 91.17 51.60
## 15 74.07 26.53
## 16 69.64 23.72
## 17 84.73 30.92
## 18 77.46 26.42
## 19 75.93 30.68
## 20 69.25 25.08
## 21 66.32 23.27
## 22 69.95 27.18
## 23 81.50 32.33
## 24 77.03 27.63
## 25 74.55 23.57
## 26 76.29 27.58
## 27 71.00 34.47
## 28 74.60 31.73
## 29 71.70 33.20
## 30 71.57 23.98
## 31 79.90 37.41
## 32 78.38 28.78

Metadata Variabel:

Variabel Label Variabel
X1 Angka Melek Aksara
X2 Angka Buta Aksara
X3 RLS
X4 Indeks Pembangunan Literasi Masyarakat
X5 Angka Harapan Lama Sekolah
X6 APM SD
X7 APM SMP
X8 APM SMA
X9 Penyelesaian Pendidikan SD
X10 Penyelesaian Pendidikan SMP
X11 Penyelesaian Pendidikan SMA
X12 APS 7-12
X13 APS 13-15
X14 APS 16-19
X15 APS 19-24

Assumption Checking

Multivariate Normal

mvn <- mvn(dat, mvnTest = "mardia")
mvn
## $multivariateNormality
##              Test         Statistic            p value Result
## 1 Mardia Skewness  760.699031721101 0.0167874243434867     NO
## 2 Mardia Kurtosis 0.288150597581361   0.77323146301757    YES
## 3             MVN              <NA>               <NA>     NO
## 
## $univariateNormality
##                Test  Variable Statistic   p value Normality
## 1  Anderson-Darling    X1        1.8123   1e-04      NO    
## 2  Anderson-Darling    X2        1.8798   1e-04      NO    
## 3  Anderson-Darling    X3        0.2858  0.6028      YES   
## 4  Anderson-Darling    X4        0.6537   0.08       YES   
## 5  Anderson-Darling    X5        0.7029  0.0601      YES   
## 6  Anderson-Darling    X6        2.0609  <0.001      NO    
## 7  Anderson-Darling    X7        0.3281  0.5054      YES   
## 8  Anderson-Darling    X8        0.5291  0.1635      YES   
## 9  Anderson-Darling    X9        1.2898   0.002      NO    
## 10 Anderson-Darling    X10       0.3499  0.4513      YES   
## 11 Anderson-Darling    X11       0.6271  0.0934      YES   
## 12 Anderson-Darling    X12       2.0160  <0.001      NO    
## 13 Anderson-Darling    X13       0.6258  0.0941      YES   
## 14 Anderson-Darling    X14       0.5593  0.1365      YES   
## 15 Anderson-Darling    X15       0.6438  0.0848      YES   
## 
## $Descriptives
##      n      Mean   Std.Dev Median   Min   Max    25th    75th        Skew
## X1  32 97.270625 2.3908966 98.195 89.11 99.79 95.6050 99.0150 -1.42210460
## X2  32  2.476562 2.1661123  1.645  0.21  9.79  0.9125  4.0525  1.39969550
## X3  32  9.338437 0.7518755  9.285  8.17 11.42  8.7050  9.7775  0.51955090
## X4  32 66.421563 7.6989656 65.810 52.50 86.74 62.0225 69.1750  0.83054032
## X5  32 13.353750 0.6516666 13.260 12.31 15.66 12.8750 13.7100  1.33487048
## X6  32 97.933437 1.4019194 98.305 93.31 99.36 97.7525 98.7925 -1.60786131
## X7  32 80.072187 4.1282127 80.380 70.85 86.78 77.3300 83.6850 -0.36569509
## X8  32 64.315313 5.4018300 63.350 54.76 76.37 60.5925 67.3275  0.51306067
## X9  32 97.393750 1.5088251 97.855 93.41 99.09 96.3525 98.4875 -1.06189679
## X10 32 90.281875 3.8520363 90.580 81.56 97.02 88.1625 93.1375 -0.41960723
## X11 32 66.816563 9.8554896 67.490 43.46 89.69 63.5975 70.9600 -0.03408319
## X12 32 99.304688 0.3705095 99.425 98.31 99.76 99.2150 99.5250 -1.36113922
## X13 32 95.955625 2.2550430 96.330 89.47 99.07 94.9725 97.7675 -0.83785609
## X14 32 75.690938 5.8534954 74.575 66.32 91.17 71.4275 79.3300  0.64294236
## X15 32 28.313750 6.4843985 27.380 17.59 51.60 23.9800 31.1225  1.33603932
##        Kurtosis
## X1   1.92850516
## X2   1.77608215
## X3  -0.08839996
## X4   0.52284354
## X5   2.67461141
## X6   2.18173124
## X7  -0.72432879
## X8  -0.43556667
## X9   0.27584587
## X10 -0.40109611
## X11  0.51888890
## X12  0.96027080
## X13  0.22592896
## X14 -0.31947020
## X15  3.00979677

Berdasarkan hasil pengujian tersebut, dapat dipahami bahwa data tidak berdistribusi multivariate normal. Sehingga, dalam proses analisis faktor tidak dapat dilanjutkan menggunakan metode maximum likelihood.

Tes Independensi

Matriks Korelasi

#Peninjauan nilai Korelasi
r <- round(cor(dat), 3)
r
##         X1     X2     X3     X4     X5    X6     X7     X8     X9    X10    X11
## X1   1.000 -0.339  0.136 -0.009 -0.157 0.101 -0.166 -0.212 -0.062 -0.066  0.077
## X2  -0.339  1.000 -0.565  0.241  0.083 0.016 -0.061 -0.030 -0.010 -0.221 -0.250
## X3   0.136 -0.565  1.000 -0.022  0.377 0.088  0.546  0.548  0.476  0.792  0.792
## X4  -0.009  0.241 -0.022  1.000  0.354 0.279 -0.017  0.069  0.014  0.016  0.251
## X5  -0.157  0.083  0.377  0.354  1.000 0.104  0.266  0.612  0.250  0.449  0.487
## X6   0.101  0.016  0.088  0.279  0.104 1.000  0.414  0.082  0.311  0.255  0.433
## X7  -0.166 -0.061  0.546 -0.017  0.266 0.414  1.000  0.597  0.734  0.820  0.730
## X8  -0.212 -0.030  0.548  0.069  0.612 0.082  0.597  1.000  0.417  0.703  0.558
## X9  -0.062 -0.010  0.476  0.014  0.250 0.311  0.734  0.417  1.000  0.772  0.694
## X10 -0.066 -0.221  0.792  0.016  0.449 0.255  0.820  0.703  0.772  1.000  0.840
## X11  0.077 -0.250  0.792  0.251  0.487 0.433  0.730  0.558  0.694  0.840  1.000
## X12  0.059 -0.162  0.428  0.194  0.149 0.608  0.669  0.377  0.597  0.603  0.686
## X13 -0.060 -0.109  0.591 -0.092  0.228 0.349  0.834  0.623  0.627  0.793  0.644
## X14 -0.166 -0.051  0.534  0.125  0.659 0.067  0.463  0.936  0.269  0.607  0.481
## X15 -0.290  0.074  0.316  0.452  0.763 0.118  0.126  0.497  0.115  0.317  0.288
##        X12    X13    X14    X15
## X1   0.059 -0.060 -0.166 -0.290
## X2  -0.162 -0.109 -0.051  0.074
## X3   0.428  0.591  0.534  0.316
## X4   0.194 -0.092  0.125  0.452
## X5   0.149  0.228  0.659  0.763
## X6   0.608  0.349  0.067  0.118
## X7   0.669  0.834  0.463  0.126
## X8   0.377  0.623  0.936  0.497
## X9   0.597  0.627  0.269  0.115
## X10  0.603  0.793  0.607  0.317
## X11  0.686  0.644  0.481  0.288
## X12  1.000  0.681  0.305  0.181
## X13  0.681  1.000  0.615  0.277
## X14  0.305  0.615  1.000  0.656
## X15  0.181  0.277  0.656  1.000

Berdasarkan matriks korelasi yang diberikan, terdapat beberapa variabel yang memiliki nilai korelasi yang sangat rendah. Sehingga perlu diidentifikasi terlebih dahulu apakah nilai korelasi memiliki nilai yang sama seperti matriks identitas melalui uji hipotesis Bartlett Sphericity test.

Tes Bartlett

#Uji Bartlett
cortest.bartlett(r, n=32)
## $chisq
## [1] 422.925
## 
## $p.value
## [1] 9.666755e-40
## 
## $df
## [1] 105
qchisq(p = 1-0.05, df = 119)
## [1] 145.4607

Hipotesis

\[ H_0: \rho=I\\ H_1:\rho\neq I \]

Tingkat Signifikansi

\[ \alpha =5\% \]

Statistik Uji

\[ Statistik~Uji=422.925 \]

Wilayah Kritis

\[ Tolak~H_0~jika~statistik~uji>\chi^2_{(p+2)(p-1)/2;\alpha}\\ \chi^2_{(17)(14)/2;0.05}=145.461\\ \]

Kesimpulan

Dengan tingkat signifikansi 5% dari sampel yang ada, dapat disimpulkan bahwa matriks korelasi dari ke delapan variabel tersebut memiliki nilai tidak sama dengan matriks identitas. Sehingga dapat dilanjutkan ke proses pengujian.

Factor Analysis

Penentuan Jumlah Faktor

#Eigen Values of Data
eigen <- eigen(cor(dat))
values <- eigen$values
vector <- eigen$vectors

#Scree Plot
scree.plot(dat)

Berdasarkan scree plot, terlihat bahwa terjadi elbow pada dimension ketiga. Sehingga, akan dilakukan exploratory factor analysis (EFA) pada dengan jumlah faktor 3.

Model Estimation

Minimum Residual Method

#Minres
fact1 <- fa(r, nfactors = 3, rotate = "varimax")
fact1$communalities
##        X1        X2        X3        X4        X5        X6        X7        X8 
## 0.1081202 0.3293917 0.8079957 0.3202874 0.6933247 0.4652497 0.7770787 0.7673605 
##        X9       X10       X11       X12       X13       X14       X15 
## 0.5896575 0.9124809 0.7945529 0.7289746 0.7127850 0.8389558 0.7306806
#Loadings
fact1$loadings
## 
## Loadings:
##     MR1    MR2    MR3   
## X1         -0.250 -0.209
## X2  -0.136         0.556
## X3   0.541  0.428 -0.576
## X4   0.104  0.236  0.504
## X5   0.176  0.792  0.189
## X6   0.583 -0.100  0.340
## X7   0.849  0.211 -0.108
## X8   0.414  0.757 -0.150
## X9   0.754  0.128       
## X10  0.789  0.440 -0.310
## X11  0.816  0.335 -0.131
## X12  0.848              
## X13  0.764  0.303 -0.193
## X14  0.298  0.858 -0.119
## X15         0.795  0.301
## 
##                  MR1   MR2   MR3
## SS loadings    4.842 3.342 1.393
## Proportion Var 0.323 0.223 0.093
## Cumulative Var 0.323 0.546 0.638
load1 <- round(matrix(fact1$loadings[1:45], ncol = 3, nrow = 15, byrow = F),3)
rownames(load1) <- c("X1","X2","X3","X4","X5","X6","X7","X8","X9","X10","X11","X12","X13","X14","X15")

Principal Component Solution Method

#Penghitungan nilai eigen
eigen <- eigen(r)
values <- eigen$values
vectors <- eigen$vectors

#Penghitungan Matriks Loading
loadings1 <- sqrt(values[1])*vectors[,1]
loadings2 <- sqrt(values[2])*vectors[,2]
loadings3 <- sqrt(values[3])*vectors[,3]

#Factor 3 Princomp Method
fact2 <- cbind(loadings1,loadings2,loadings3)
fact2 <- varimax(fact2) #rotation loadings matriks factor analysis dengan 3 faktor
load2 <- round(matrix(fact2$loadings[1:45], ncol = 3, nrow = 15, byrow = F),3)
rownames(load2) <- c("X1","X2","X3","X4","X5","X6","X7","X8","X9","X10","X11","X12","X13","X14","X15")
load2
##       [,1]   [,2]   [,3]
## X1  -0.091  0.350  0.331
## X2   0.151 -0.031 -0.743
## X3  -0.561 -0.451  0.547
## X4  -0.123 -0.228 -0.668
## X5  -0.166 -0.824 -0.202
## X6  -0.668  0.193 -0.418
## X7  -0.858 -0.225  0.080
## X8  -0.417 -0.786  0.123
## X9  -0.798 -0.123  0.041
## X10 -0.787 -0.457  0.262
## X11 -0.831 -0.338  0.112
## X12 -0.874 -0.014 -0.095
## X13 -0.785 -0.317  0.178
## X14 -0.305 -0.864  0.095
## X15 -0.080 -0.815 -0.309

Interpretasi

Minimum Residual

Nilai Komunalitas

as.matrix(fact1$communalities)
##          [,1]
## X1  0.1081202
## X2  0.3293917
## X3  0.8079957
## X4  0.3202874
## X5  0.6933247
## X6  0.4652497
## X7  0.7770787
## X8  0.7673605
## X9  0.5896575
## X10 0.9124809
## X11 0.7945529
## X12 0.7289746
## X13 0.7127850
## X14 0.8389558
## X15 0.7306806

Sebagian besar dari variabel sudah memiliki nilai communalities yang lebih dari 0,5. Hal ini bermakna bahwa dari main factor yang disusun, dapat menjelaskan sebagian besar variasi dari masing-masing variabel pada data.

Loadings

load1
##       [,1]   [,2]   [,3]
## X1   0.040 -0.250 -0.209
## X2  -0.136  0.037  0.556
## X3   0.541  0.428 -0.576
## X4   0.104  0.236  0.504
## X5   0.176  0.792  0.189
## X6   0.583 -0.100  0.340
## X7   0.849  0.211 -0.108
## X8   0.414  0.757 -0.150
## X9   0.754  0.128 -0.070
## X10  0.789  0.440 -0.310
## X11  0.816  0.335 -0.131
## X12  0.848  0.036  0.093
## X13  0.764  0.303 -0.193
## X14  0.298  0.858 -0.119
## X15  0.093  0.795  0.301

Principal Component Method

Communalities

as.matrix(rowSums(load2^2))
##         [,1]
## X1  0.240342
## X2  0.575811
## X3  0.817331
## X4  0.513337
## X5  0.747336
## X6  0.658197
## X7  0.793189
## X8  0.806814
## X9  0.653614
## X10 0.896862
## X11 0.817349
## X12 0.773097
## X13 0.748398
## X14 0.848546
## X15 0.766106

Loadings

load2
##       [,1]   [,2]   [,3]
## X1  -0.091  0.350  0.331
## X2   0.151 -0.031 -0.743
## X3  -0.561 -0.451  0.547
## X4  -0.123 -0.228 -0.668
## X5  -0.166 -0.824 -0.202
## X6  -0.668  0.193 -0.418
## X7  -0.858 -0.225  0.080
## X8  -0.417 -0.786  0.123
## X9  -0.798 -0.123  0.041
## X10 -0.787 -0.457  0.262
## X11 -0.831 -0.338  0.112
## X12 -0.874 -0.014 -0.095
## X13 -0.785 -0.317  0.178
## X14 -0.305 -0.864  0.095
## X15 -0.080 -0.815 -0.309