This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
You can also embed plots, for example:
Note that the echo = FALSE
parameter was added to the code chunk to prevent printing of the R code that generated the plot.
# No 1 a Mengimpor dataset mtcars
data(mtcars)
# Menghitung statistik deskriptif untuk variabel mpg
mean_mpg <- mean(mtcars$mpg)
median_mpg <- median(mtcars$mpg)
sd_mpg <- sd(mtcars$mpg)
# Menampilkan hasil
mean_mpg
## [1] 20.09062
median_mpg
## [1] 19.2
sd_mpg
## [1] 6.026948
# No 1 b Menampilkan hasil
cat("Mean MPG:", mean_mpg, "\n")
## Mean MPG: 20.09062
cat("Median MPG:", median_mpg, "\n")
## Median MPG: 19.2
cat("Standar Deviasi MPG:", sd_mpg, "\n")
## Standar Deviasi MPG: 6.026948
# No 2 Membuat boxplot mpg berdasarkan jumlah silinder (cyl)
boxplot(mpg ~ cyl, data = mtcars,
main = "Boxplot MPG Berdasarkan Jumlah Silinder",
xlab = "Jumlah Silinder",
ylab = "Miles Per Gallon (MPG)",
col = c("PINK", "LIGHTBLUE", "PURPLE"))
# No 3 Membuat histogram untuk variabel hp
hist(mtcars$hp, breaks = 10, probability = TRUE,
main = "Histogram dan Garis Densitas Horsepower",
xlab = "Horsepower (hp)", col = "PINK", border = "black")
# Menambahkan garis densitas
lines(density(mtcars$hp), col = "BLACK", lwd = 2)
# No 3 Melakukan uji ANOVA
anova_result <- aov(Petal.Length ~ Species, data = iris)
# Menampilkan hasil uji ANOVA
summary(anova_result)
## Df Sum Sq Mean Sq F value Pr(>F)
## Species 2 437.1 218.55 1180 <2e-16 ***
## Residuals 147 27.2 0.19
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# No 4 Memfilter data untuk spesies setosa dan versicolor
setosa <- subset(iris, Species == "setosa")
versicolor <- subset(iris, Species == "versicolor")
# Melakukan uji t-test
t_test_result <- t.test(setosa$Sepal.Length, versicolor$Sepal.Length)
# Menampilkan hasil uji t-test
t_test_result
##
## Welch Two Sample t-test
##
## data: setosa$Sepal.Length and versicolor$Sepal.Length
## t = -10.521, df = 86.538, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.1057074 -0.7542926
## sample estimates:
## mean of x mean of y
## 5.006 5.936
# No 5 a Model regresi linier sederhana
reg_model <- lm(mpg ~ wt, data = mtcars)
# Menampilkan ringkasan model
summary(reg_model)
##
## Call:
## lm(formula = mpg ~ wt, data = mtcars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5432 -2.3647 -0.1252 1.4096 6.8727
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 37.2851 1.8776 19.858 < 2e-16 ***
## wt -5.3445 0.5591 -9.559 1.29e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.046 on 30 degrees of freedom
## Multiple R-squared: 0.7528, Adjusted R-squared: 0.7446
## F-statistic: 91.38 on 1 and 30 DF, p-value: 1.294e-10
# No 5 b Scatter plot
plot(mtcars$wt, mtcars$mpg,
main = "Relasi Antara Berat Mobil (wt) dan Efisiensi Bahan Bakar (mpg)",
xlab = "Berat Mobil (wt)", ylab = "Miles Per Gallon (mpg)",
col = "pink", pch = 16)
# Menambahkan garis regresi ke plot
abline(reg_model, col = "blue", lwd = 2)
Intercept: Prediksi nilai mpg saat berat mobil (wt) sama dengan 0.
Koefisien Slope (wt): Nilai negatif berarti peningkatan berat mobil menyebabkan penurunan efisiensi bahan bakar.Slope = -4, setiap kenaikan 1 unit berat mobil menyebabkan penurunan efisiensi bahan bakar sebesar 4 mpg.
R2 =0.75, berarti 75% variabilitas mpg dijelaskan oleh model, sedangkan 25% lainnya disebabkan oleh variabel lain.
p-value untuk variabel wt lebih kecil dari 0.05, hubungan antara berat mobil dan efisiensi bahan bakar signifikan secara statistik.