data(mtcars) mean(mtcars\(mpg) median(mtcars\)mpg) sd(mtcars$mpg)
#membuat boxplot
boxplot(mpg ~ cyl, data = mtcars, main = "boxplot MPG Berdasarkan cyl",
xlab = "Cylinders", ylab = "Miles per gallon")
#histogram untuk variabel HP dan tambahan garis densitas
hist(mtcars$hp, breaks = 10, probability = TRUE,
main = "hitogram horsepower dengan densitas",
xlab = "horsepower")
lines(density(mtcars$hp), col = "blue" , lwd = 2)
#UJI ANOVA
anova_result <- aov(Sepal.Length ~ Species, data = iris)
summary(anova_result)
## Df Sum Sq Mean Sq F value Pr(>F)
## Species 2 63.21 31.606 119.3 <2e-16 ***
## Residuals 147 38.96 0.265
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#uji t-test
t_test_result <- t.test(Petal.Length ~ Species,
data = subset(iris, Species %in% c("setosa","versicolor")))
t_test_result
##
## Welch Two Sample t-test
##
## data: Petal.Length by Species
## t = -39.493, df = 62.14, p-value < 2.2e-16
## alternative hypothesis: true difference in means between group setosa and group versicolor is not equal to 0
## 95 percent confidence interval:
## -2.939618 -2.656382
## sample estimates:
## mean in group setosa mean in group versicolor
## 1.462 4.260
#model regresi linear sederhana
#a tampilkan ringkasan model menggunakan summary()
model <- lm(mpg ~ wt, data = mtcars)
summary(model)
##
## Call:
## lm(formula = mpg ~ wt, data = mtcars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5432 -2.3647 -0.1252 1.4096 6.8727
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 37.2851 1.8776 19.858 < 2e-16 ***
## wt -5.3445 0.5591 -9.559 1.29e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.046 on 30 degrees of freedom
## Multiple R-squared: 0.7528, Adjusted R-squared: 0.7446
## F-statistic: 91.38 on 1 and 30 DF, p-value: 1.294e-10
#b buat scatter plot dengan garis regresi
plot(mtcars$wt, mtcars$mpg,
main = "Scatter Plot MPG vs WT dengan Garis Regresi",
xlab = "Berat Mobil (wt",
ylab = "MIles per Gallon (mpg",
pch = 16)
abline(model, col + "red", lwd = 2)
#c interpretasi hasil
# koefisien regresi (slope) menunjukan perubahan rata-rata mpg untuk setiap peningkatan 1 unit wt
#Nilai R aksen menunjukan seberapa baik model menjelaskan variasi data. jika R aksen mendekati 1, model sangat baik