summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
You can also embed plots, for example:
Note that the echo = FALSE
parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.
# Memuat dataset mtcars
data(mtcars)
# Menghitung statistik deskriptif untuk mpg
mean_mpg <- mean(mtcars$mpg) # Rata-rata
median_mpg <- median(mtcars$mpg) # Median
sd_mpg <- sd(mtcars$mpg) # Standar deviasi
# Menampilkan hasil
cat("Mean mpg:", mean_mpg, "\n")
## Mean mpg: 20.09062
cat("Median mpg:", median_mpg, "\n")
## Median mpg: 19.2
cat("Standard Deviation mpg:", sd_mpg, "\n")
## Standard Deviation mpg: 6.026948
# Memuat library ggplot2
library(ggplot2)
# Membuat boxplot dengan ggplot2
ggplot(mtcars, aes(x = factor(cyl), y = mpg, fill = factor(cyl))) +
geom_boxplot() +
labs(title = "Boxplot of MPG by Cylinder",
x = "Number of Cylinders",
y = "Miles per Gallon (MPG)") +
theme_minimal() +
scale_fill_brewer(palette = "Pastel1")
2.
# Histogram dan garis densitas untuk hp
hist(mtcars$hp, breaks = 10, probability = TRUE,
main = "Histogram of Horsepower (hp)",
xlab = "Horsepower (hp)",
col = "pink", border = "black")
lines(density(mtcars$hp), col = "darkblue", lwd = 2)
Data (hp) dalam dataset mtcars memiliki distribusi yang skewed ke kanan,
dengan konsentrasi nilai pada rentang 100–150 horsepower. Nilai
horsepower yang sangat tinggi (> 300) jarang terjadi dan bisa
memengaruhi perhitungan statistik seperti rata-rata.
# Uji ANOVA
data(iris)
anova_model <- aov(Sepal.Length ~ Species, data = iris)
summary(anova_model)
## Df Sum Sq Mean Sq F value Pr(>F)
## Species 2 63.21 31.606 119.3 <2e-16 ***
## Residuals 147 38.96 0.265
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Uji t dua sampel
setosa <- subset(iris, Species == "setosa")$Petal.Length
versicolor <- subset(iris, Species == "versicolor")$Petal.Length
t_test <- t.test(setosa, versicolor, var.equal = TRUE)
print(t_test)
##
## Two Sample t-test
##
## data: setosa and versicolor
## t = -39.493, df = 98, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.938597 -2.657403
## sample estimates:
## mean of x mean of y
## 1.462 4.260
# Model regresi
model <- lm(mpg ~ wt, data = mtcars)
summary(model)
##
## Call:
## lm(formula = mpg ~ wt, data = mtcars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5432 -2.3647 -0.1252 1.4096 6.8727
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 37.2851 1.8776 19.858 < 2e-16 ***
## wt -5.3445 0.5591 -9.559 1.29e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.046 on 30 degrees of freedom
## Multiple R-squared: 0.7528, Adjusted R-squared: 0.7446
## F-statistic: 91.38 on 1 and 30 DF, p-value: 1.294e-10
# Scatter plot dengan garis regresi
plot(mtcars$wt, mtcars$mpg,
main = "Scatter Plot of MPG vs WT",
xlab = "Weight (WT)",
ylab = "Miles per Gallon (MPG)",
pch = 16, col = "blue")
abline(model, col = "pink", lwd = 2)
5. c. interpretasi hasil Koefisien Regresi: - Intercept (beta 0) = Nilai
rata-rata (mpg) saat (wt) = 0. - Slope (beta 1): Penurunan rata-rata
(mpg) untuk setiap kenaikan 1 unit (wt).
Nilai R*2: - Mengukur seberapa besar variasi dalam (mpg) yang dijelaskan oleh (wt). Nilai antara 0 dan 1, semakin besar semakin baik.
Jika ada p-value untuk koefisien <0.05, maka (wt) secara signifikan memengaruhi (mpg).