data(mtcars)
# a. Hitung statistik deskriptif untuk variabel mpg
mean_mpg <- mean(mtcars$mpg) # Mean
median_mpg <- median(mtcars$mpg) # Median
sd_mpg <- sd(mtcars$mpg) # Standard Deviation
cat("Mean MPG:", mean_mpg, "\n")
## Mean MPG: 20.09062
cat("Median MPG:", median_mpg, "\n")
## Median MPG: 19.2
cat("Standard Deviation MPG:", sd_mpg, "\n")
## Standard Deviation MPG: 6.026948
# b. Buat boxplot variabel mpg berdasarkan variabel cyl
boxplot(mpg ~ cyl, data = mtcars,
main = "Boxplot MPG berdasarkan Cylinders",
xlab = "Jumlah Cylinders",
ylab = "Miles per Gallon (MPG)",
col = c("red", "blue", "green"))
# Histogram untuk variabel hp dengan garis densitas
hist(mtcars$hp,
breaks = 10,
main = "Histogram Horsepower (hp)",
xlab = "Horsepower (hp)",
col = "lightblue",
border = "black",
probability = TRUE)
lines(density(mtcars$hp), col = "red", lwd = 2)
# Summary untuk distribusi
summary(mtcars$hp)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 52.0 96.5 123.0 146.7 180.0 335.0
# ANOVA untuk Sepal.Length berdasarkan Species
anova_model <- aov(Sepal.Length ~ Species, data = iris)
summary(anova_model)
## Df Sum Sq Mean Sq F value Pr(>F)
## Species 2 63.21 31.606 119.3 <2e-16 ***
## Residuals 147 38.96 0.265
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Filter data untuk Setosa dan Versicolor
setosa <- subset(iris, Species == "setosa")$Petal.Length
versicolor <- subset(iris, Species == "versicolor")$Petal.Length
# Uji t-test
t_test_result <- t.test(setosa, versicolor, var.equal = TRUE)
t_test_result
##
## Two Sample t-test
##
## data: setosa and versicolor
## t = -39.493, df = 98, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.938597 -2.657403
## sample estimates:
## mean of x mean of y
## 1.462 4.260
# Model regresi linear
regression_model <- lm(mpg ~ wt, data = mtcars)
# a. Ringkasan model
summary(regression_model)
##
## Call:
## lm(formula = mpg ~ wt, data = mtcars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5432 -2.3647 -0.1252 1.4096 6.8727
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 37.2851 1.8776 19.858 < 2e-16 ***
## wt -5.3445 0.5591 -9.559 1.29e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.046 on 30 degrees of freedom
## Multiple R-squared: 0.7528, Adjusted R-squared: 0.7446
## F-statistic: 91.38 on 1 and 30 DF, p-value: 1.294e-10
# b. Scatter plot dengan garis regresi
plot(mtcars$wt, mtcars$mpg,
main = "Scatter Plot MPG vs Weight",
xlab = "Weight (wt)",
ylab = "Miles per Gallon (MPG)",
pch = 16, col = "blue")
abline(regression_model, col = "red", lwd = 2)