jawaban soal praktik 1A
data(mtcars)
head(mtcars)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
# Menghitung statistik deskriptif
mean_mpg <- mean(mtcars$mpg)
median_mpg <- median(mtcars$mpg)
sd_mpg <- sd(mtcars$mpg)
# Menampilkan hasil
cat("Mean MPG:", mean_mpg, "\n")
## Mean MPG: 20.09062
cat("Median MPG:", median_mpg, "\n")
## Median MPG: 19.2
cat("Standar Deviasi MPG:", sd_mpg, "\n")
## Standar Deviasi MPG: 6.026948
jawaban soal praktik 1B
# Membuat boxplot
boxplot(mpg ~ cyl, data = mtcars,
main = "Boxplot MPG Berdasarkan Cylinders",
xlab = "Jumlah Cylinders",
ylab = "Miles per Gallon (MPG)",
col = c("lightblue", "lightgreen", "pink"))
jawaban soal praktik 2
# Membuat histogram
hist(mtcars$hp, probability = TRUE, col = "lightblue",
main = "Histogram HP dengan Garis Densitas",
xlab = "Horsepower (HP)")
# Menambahkan garis densitas
lines(density(mtcars$hp), col = "red", lwd = 2)
jawaban soal praktik 3
# Memuat dataset iris
data(iris)
# Mengecek 5 baris pertama
head(iris)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
# Uji ANOVA
anova_result <- aov(Sepal.Length ~ Species, data = iris)
# Ringkasan hasil
summary(anova_result)
## Df Sum Sq Mean Sq F value Pr(>F)
## Species 2 63.21 31.606 119.3 <2e-16 ***
## Residuals 147 38.96 0.265
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
jawaban soal praktik 4
# Membandingkan panjang petal antara setosa dan versicolor
setosa <- subset(iris, Species == "setosa")$Petal.Length
versicolor <- subset(iris, Species == "versicolor")$Petal.Length
# Melakukan uji t-test
t_test_result <- t.test(setosa, versicolor, var.equal = TRUE)
# Menampilkan hasil
t_test_result
##
## Two Sample t-test
##
## data: setosa and versicolor
## t = -39.493, df = 98, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.938597 -2.657403
## sample estimates:
## mean of x mean of y
## 1.462 4.260
jawaban soal praktik 5A
# Memuat dataset mtcars
data(mtcars)
# Membuat model regresi
lm_model <- lm(mpg ~ wt, data = mtcars)
# Menampilkan ringkasan model
summary(lm_model)
##
## Call:
## lm(formula = mpg ~ wt, data = mtcars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5432 -2.3647 -0.1252 1.4096 6.8727
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 37.2851 1.8776 19.858 < 2e-16 ***
## wt -5.3445 0.5591 -9.559 1.29e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.046 on 30 degrees of freedom
## Multiple R-squared: 0.7528, Adjusted R-squared: 0.7446
## F-statistic: 91.38 on 1 and 30 DF, p-value: 1.294e-10
jawaban soal praktik 5B
# Scatter plot dengan garis regresi
plot(mtcars$wt, mtcars$mpg,
main = "Scatter Plot MPG vs Weight",
xlab = "Weight (wt)",
ylab = "Miles per Gallon (MPG)",
pch = 19, col = "blue")
abline(lm_model, col = "red", lwd = 2)
jawaban soal praktik 5C Koefisien Regresi
Intercept (Konstanta): 37.2851
Ini berarti ketika berat kendaraan adalah 0, perkiraan MPG adalah 37.2851 Namun, interpretasi ini bersifat hipotetikal karena tidak ada kendaraan dengan berat 0
Koefisien Weight (wt): -5.3445
Menunjukkan hubungan negatif antara berat kendaraan dan MPG Setiap peningkatan 1 unit berat kendaraan, akan menurunkan MPG sebesar 5.3445 Artinya, semakin berat kendaraan, semakin rendah jarak tempuh per galon bahan bakarnya