1 - PACOTES

library(ggplot2)
library(qpcR)
library(dplyr)
library(tibble)
library(openxlsx)
library(tidyr)
library(tidyverse)

library(emmeans)#medias e teste de media para modelo misto
library(multcompView) #variancia
library(multcomp)

2 - Dados

dados = read.csv("D:/Armazenamento/DATA R/Deborah UFPA/data.csv")
View(dados)
str(dados)
'data.frame':   216 obs. of  19 variables:
 $ Dieta     : chr  "TCR1D1" "TCR1D1" "TCR1D1" "TCR2D1" ...
 $ Inoculante: num  1 1 1 1 1 1 1 1 1 1 ...
 $ Dia       : num  1 1 1 1 1 1 1 1 1 1 ...
 $ Rep       : num  1 1 1 2 2 2 3 3 3 4 ...
 $ T0        : num  1.39 -0.9 -0.93 1.05 0.58 1.33 0.84 1.69 1.01 1.16 ...
 $ T2        : num  3.38 1.29 1.6 3.29 3.04 4.27 4.67 5.85 4.88 4.06 ...
 $ T4        : num  5.98 4.49 4.44 6.51 6.42 ...
 $ T6        : num  8.63 7.76 7.56 10.24 10.47 ...
 $ T8        : num  13 12.6 13 17.2 17.6 ...
 $ T10       : num  18.5 17.4 18.3 23.7 24.7 ...
 $ T12       : num  27.4 26.1 27.5 33.8 35.7 ...
 $ T15       : num  43.6 41.3 43 49.6 53.6 ...
 $ T18       : num  62.5 60.7 62.1 69.7 72.3 ...
 $ T21       : num  79.5 77.8 78.5 85.4 86 ...
 $ T24       : num  92.5 90.7 91.7 98.1 95.6 ...
 $ NetGP24h  : num  92.5 90.7 91.7 98.1 95.6 ...
 $ MOVD      : num  0.84 0.84 0.81 0.81 0.82 0.82 0.81 0.82 0.82 0.79 ...
 $ DMS       : num  909 916 885 883 901 ...
 $ DMO       : num  905 907 881 878 889 ...
dados$Dieta=as.factor(dados$Dieta)


#Filtro
datamodels= dados %>%
  select(Dieta, T0:T24) %>%          
  group_by(Dieta) %>%                
  summarise(across(everything(), mean, na.rm = TRUE))
print(datamodels)

#Inversão
data_long <- datamodels %>%
  pivot_longer(cols = starts_with("T"), 
               names_to = "Time", 
               values_to = "PG") %>%
  mutate(Time = as.numeric(gsub("T", "", Time))) %>%
  pivot_wider(names_from = Dieta, values_from = PG)
head(data_long)

3 - SHAPE DATA - LONG FORMAT

data_long1 <- gather(data_long, key = "id", value = "pg", -Time) #invertendo novamente, para formato longo
data_long1 <- drop_na(data_long1) #remoção de NA
data_long1 <- data_long1 %>% filter(pg >= 0) #valores negativos
print(data_long1)
data_long_filtro <- subset(data_long1, !Time %in% c(6, 10, 12,18,21)) #Reduzindo alguns tempos desnecessarios
data_long_filtro

The format for this code to work is wide format, with every column being a substrate.

4 - Ranking dos modelos

Exponencial

exp <- nls(pg ~ (vf*(1-exp(-k*Time))),
          data = data_long_filtro,
          start = c(vf= 100, k = 0.05),
          algorithm = "port",
           lower = c(1, 0.001), 
           upper = c(300, 0.5),
          control = nls.control(maxiter = 500, minFactor = 1e-10))

exp_stat_criteria <- as.data.frame(c(deviance(exp), AICc(exp), BIC(exp), Rsq.ad(exp), RMSE(exp)),  row.names = c("RSS","AIC","BIC","RSQ","RMSE" ))
colnames(exp_stat_criteria) <- "Exponencial"

explagonencial

explag <- nls(pg ~ (vf*(1-exp(-k*(Time-LAG)))),
          data = data_long_filtro,
          start = c(vf= 200, k = 0.05, LAG = 0.5),
          algorithm = "port",
           lower = c(1, 0.001, 0.01), 
           upper = c(300, 0.5, 1),
          control = nls.control(maxiter = 500, minFactor = 1e-10)
          )

explag_stat_criteria <- as.data.frame(c(deviance(explag), AICc(explag), BIC(explag), Rsq.ad(explag), RMSE(explag)),  row.names = c("RSS","AIC","BIC","RSQ","RMSE" ))
colnames(explag_stat_criteria) <- "explagonencial"

Gompertz

gom <- nls(pg ~ (vf*exp(-exp(1-k*(Time-l)))),
          data = data_long_filtro,
          algorithm = "port",
          start = c(vf= 200, k = 0.05, l = 0.1),
          lower = c(0,0,0))

gom_stat_criteria <- as.data.frame(c(deviance(gom), AICc(gom), BIC(gom), Rsq.ad(gom), RMSE(gom)),  row.names = c("RSS","AIC","BIC","RSQ","RMSE" ))
colnames(gom_stat_criteria) <- "Gompertz"

France

fra <- nls(pg ~ vf*(1-exp(-k*(Time-l)-d*(sqrt(Time)-sqrt(l)))),
          data = data_long_filtro,
          algorithm = "port",
          start = c(vf= 100, k = 0.01, l = 0, d = 0.01),
          lower = c(0, 0, 0, 0),
          upper = c(200, 1, 1, 1)
          )

fra_stat_criteria <- as.data.frame(c(deviance(fra), AICc(fra), BIC(fra), Rsq.ad(fra), RMSE(fra)),  row.names = c("RSS","AIC","BIC","RSQ","RMSE" ))
colnames(fra_stat_criteria) <- "France"

Schofield U

schu <- nls(pg ~ vf/(1+exp(2-4*k*(Time-l))),
          data = data_long_filtro,
          algorithm = "port",
          start = c(vf= 100, k = 0.05, l = 0.2))

schu_stat_criteria <- as.data.frame(c(deviance(schu), AICc(schu), BIC(schu), Rsq.ad(schu), RMSE(schu)),  row.names = c("RSS","AIC","BIC","RSQ","RMSE" ))
colnames(schu_stat_criteria) <- "Schofield U"

Wang

wan <- nls(pg ~ vf*((1-exp(-k*Time))/(1+exp(log(1/d)-k*Time))),
          data = data_long_filtro,
          algorithm = "port",
          start = c(vf=200, k = 0.01, d = 1),
          lower = c(0,0,0.1),
          upper = c(300,0.5,10)
          )

wan_stat_criteria <- as.data.frame(c(deviance(wan), AICc(wan), BIC(wan), Rsq.ad(wan), RMSE(wan)),  row.names = c("RSS","AIC","BIC","RSQ","RMSE" ))
colnames(wan_stat_criteria) <- "Wang"

Wang L

wanl <- nls(pg ~ vf*(1-exp(-k*(Time-l)))/(1+exp(log(1/d)-k*(Time-l))),
          data = data_long_filtro,
          algorithm = "port",
          start = c(vf=200, k = 0.05, d = 0.5, l = 0.5),
          lower = c(0, 0, 0, 0),
          upper = c(200, 1, 1, 1)
          )

wanl_stat_criteria <- as.data.frame(c(deviance(wanl), AICc(wanl), BIC(wanl), Rsq.ad(wanl), RMSE(wanl)),  row.names = c("RSS","AIC","BIC","RSQ","RMSE" ))
colnames(wanl_stat_criteria) <- "Wang L"

Abreu

abr <- nls(pg ~ vf1*(1-exp(-k1*Time))+vf2*exp(-exp(1+k2*exp(1)*(L-Time))),
          data = data_long_filtro,
          algorithm = "port",
          start = c(vf1 = 155, k1 = 0.005, L = 0.5, vf2 = 50, k2 = 0.05),
          lower = c(0,0,0,0,0),
          upper = c(300,0.5,1,300,0.5)
          )

abr_stat_criteria <- as.data.frame(c(deviance(abr), AICc(abr), BIC(abr), Rsq.ad(abr), RMSE(abr)),  row.names = c("RSS","AIC","BIC","RSQ","RMSE" ))
colnames(abr_stat_criteria) <- "Abreu"

5 - Resultado Criterios Estatisticos

                     RSS      AIC      BIC       RSQ      RMSE
Abreu          34715.086 3008.123 3032.101 0.8776115  9.179320
Exponencial    41925.027 3079.752 3091.786 0.8595863 10.087605
explagonencial 30866.804 2955.626 2971.652 0.9250198  8.655601
France         37505.028 3037.921 3057.928 0.9020921  9.541049
Gompertz        9680.537 2477.886 2493.911 0.9825880  4.847314
Schofield U     9988.227 2490.777 2506.803 0.9811540  4.923745
Wang           12519.267 2583.832 2599.858 0.9743364  5.512401
Wang L          9683.330 2480.044 2500.051 0.9824672  4.848013
tibble [3,708 × 4] (S3: tbl_df/tbl/data.frame)
 $ t     : num [1:3708] 0 0 0 0 0 0 0 0 0 2 ...
 $ assay : Factor w/ 72 levels "LBLHR1D1","LBLHR1D2",..: 1 1 1 1 1 1 1 1 1 1 ...
 $ modelo: Factor w/ 9 levels "abr","exp","explag",..: 6 2 3 5 4 7 8 9 1 6 ...
 $ pg    : num [1:3708] 1.613 0 -4.756 0.498 -5.151 ...

6 - Plot

7 - Avaliação dos Modelos - Ranking

criteria <- as.data.frame(t(stat_criteria_results))
criteria <- rownames_to_column(criteria, "criteria")
criteria

write.xlsx(criteria, file = "D:/Armazenamento/DATA R/Deborah UFPA/criteria.xlsx", sheetName = "Dados", rownames = FALSE)

criteria %>%
   mutate(across(c(RSS:RMSE), rank)) -> ranked
ranked$TOT <- (ranked$RSS+ranked$AIC+ranked$BIC+ranked$RMSE-ranked$RSQ)
ranked

write.xlsx(ranked, file = "D:/Armazenamento/DATA R/Deborah UFPA/ranked.xlsx", sheetName = "Dados", rownames = FALSE)

Gompertz foi o melhor modelo.

8 - Aplicando o modelo Gompertz para análise do perfil de fermentação

\(\displaystyle V= vf*exp^(-exp^{1-k(t-l)})\)

data_long = drop_na(data_long)
print(data_long)

mod_exp_pg <- lapply(names(data_long)[c(2:73)],
                   function(s){
                     nls(substitute(p ~ (vf*exp(-exp(1-k*(Time-l)))),
                                    list(p = as.name(s))),
                         data = data_long,
                         algorithm = "port",
          start = c(vf= 200, k = 0.05, l = 0.1),
          lower = c(0,0,0))
                     }
                   )

results_pg<-as.data.frame(lapply(mod_exp_pg,coef))
names(results_pg) <- names(data_long[2:73])
results_pg <- as.data.frame(t(results_pg))
results_pg <- rownames_to_column(results_pg, "substrate")
View(results_pg)

Calcular t0.5

results_pg = results_pg %>% mutate(t0.5 = l + (1 - log(log(2))) / k)
results_pg

Calcular o mu0.5

results_pg = results_pg %>% mutate(mu0.5 = log(2) * k)
results_pg$mu0.5=results_pg$mu0.5*100

#k= fractional rate of gas production
results_pg$k1=results_pg$k*100 #PORCENTAGEM

print(results_pg)

Juntar dados

#Filtro
dados.total= dados %>%
  group_by(Dieta,Inoculante,Dia) %>%                
  summarise(across(everything(), mean, na.rm = TRUE))
`summarise()` has grouped output by 'Dieta', 'Inoculante'. You can override using the `.groups` argument.
print(dados.total)


data_combinado = cbind(dados.total, results_pg)
View(data_combinado)

9 - Análise estatistica

Anova

data_all=data_combinado[,-20]
str(data_all)
gropd_df [72 × 25] (S3: grouped_df/tbl_df/tbl/data.frame)
 $ Dieta     : Factor w/ 72 levels "LBLHR1D1","LBLHR1D2",..: 1 2 3 4 5 6 7 8 9 10 ...
 $ Inoculante: num [1:72] 3 3 3 3 3 3 3 3 3 3 ...
 $ Dia       : num [1:72] 1 2 3 4 5 6 1 2 3 4 ...
 $ Rep       : num [1:72] 1 1 1 1 1 1 2 2 2 2 ...
 $ T0        : num [1:72] 1.613 1.213 -0.443 -0.28 1.547 ...
 $ T2        : num [1:72] 4.29 3.56 1.47 1.08 2.6 ...
 $ T4        : num [1:72] 7.343 7.253 2.413 0.853 7.947 ...
 $ T6        : num [1:72] 10.4 12.64 8.28 4.18 11.49 ...
 $ T8        : num [1:72] 16.2 20.7 19.1 11.7 18.2 ...
 $ T10       : num [1:72] 23.1 28.9 31.4 21.4 25.7 ...
 $ T12       : num [1:72] 32.6 39.1 46.6 33.1 37.2 ...
 $ T15       : num [1:72] 47.6 55.7 68 53.4 59 ...
 $ T18       : num [1:72] 65.6 71.9 82.6 70.6 76.6 ...
 $ T21       : num [1:72] 81 85.2 93.5 84.1 90.2 ...
 $ T24       : num [1:72] 91.9 94.5 100.4 92.4 99.3 ...
 $ NetGP24h  : num [1:72] 91.9 94.5 100.4 92.4 99.3 ...
 $ MOVD      : num [1:72] 0.797 0.817 0.83 0.85 0.853 ...
 $ DMS       : num [1:72] 871 876 909 932 931 ...
 $ DMO       : num [1:72] 866 878 905 925 926 ...
 $ vf        : num [1:72] 152 128 110 109 133 ...
 $ k         : num [1:72] 0.0948 0.1146 0.1833 0.1665 0.1239 ...
 $ l         : num [1:72] 5.87 4.63 5.71 6.94 5.47 ...
 $ t0.5      : num [1:72] 20.3 16.6 13.2 15.2 16.5 ...
 $ mu0.5     : num [1:72] 6.57 7.94 12.71 11.54 8.59 ...
 $ k1        : num [1:72] 9.48 11.46 18.33 16.65 12.39 ...
 - attr(*, "groups")= tibble [72 × 3] (S3: tbl_df/tbl/data.frame)
  ..$ Dieta     : Factor w/ 72 levels "LBLHR1D1","LBLHR1D2",..: 1 2 3 4 5 6 7 8 9 10 ...
  ..$ Inoculante: num [1:72] 3 3 3 3 3 3 3 3 3 3 ...
  ..$ .rows     : list<int> [1:72] 
  .. ..$ : int 1
  .. ..$ : int 2
  .. ..$ : int 3
  .. ..$ : int 4
  .. ..$ : int 5
  .. ..$ : int 6
  .. ..$ : int 7
  .. ..$ : int 8
  .. ..$ : int 9
  .. ..$ : int 10
  .. ..$ : int 11
  .. ..$ : int 12
  .. ..$ : int 13
  .. ..$ : int 14
  .. ..$ : int 15
  .. ..$ : int 16
  .. ..$ : int 17
  .. ..$ : int 18
  .. ..$ : int 19
  .. ..$ : int 20
  .. ..$ : int 21
  .. ..$ : int 22
  .. ..$ : int 23
  .. ..$ : int 24
  .. ..$ : int 25
  .. ..$ : int 26
  .. ..$ : int 27
  .. ..$ : int 28
  .. ..$ : int 29
  .. ..$ : int 30
  .. ..$ : int 31
  .. ..$ : int 32
  .. ..$ : int 33
  .. ..$ : int 34
  .. ..$ : int 35
  .. ..$ : int 36
  .. ..$ : int 37
  .. ..$ : int 38
  .. ..$ : int 39
  .. ..$ : int 40
  .. ..$ : int 41
  .. ..$ : int 42
  .. ..$ : int 43
  .. ..$ : int 44
  .. ..$ : int 45
  .. ..$ : int 46
  .. ..$ : int 47
  .. ..$ : int 48
  .. ..$ : int 49
  .. ..$ : int 50
  .. ..$ : int 51
  .. ..$ : int 52
  .. ..$ : int 53
  .. ..$ : int 54
  .. ..$ : int 55
  .. ..$ : int 56
  .. ..$ : int 57
  .. ..$ : int 58
  .. ..$ : int 59
  .. ..$ : int 60
  .. ..$ : int 61
  .. ..$ : int 62
  .. ..$ : int 63
  .. ..$ : int 64
  .. ..$ : int 65
  .. ..$ : int 66
  .. ..$ : int 67
  .. ..$ : int 68
  .. ..$ : int 69
  .. ..$ : int 70
  .. ..$ : int 71
  .. ..$ : int 72
  .. ..@ ptype: int(0) 
  ..- attr(*, ".drop")= logi TRUE
data_all$Inoculante <- as.factor(data_all$Inoculante)
data_all$Dia <- as.factor(data_all$Dia)

# Filtrar nomes das colunas numéricas 
variaveis_dependentes = names(data_all)[sapply(data_all, is.numeric) & !(names(data_all) %in% names(data_all)[1:15])]
variaveis_dependentes
 [1] "NetGP24h" "MOVD"     "DMS"      "DMO"      "vf"       "k"        "l"        "t0.5"     "mu0.5"    "k1"      
#Função para ANOVA
anova_model_all <- function(data, variaveis_dependentes) {
  resultados_anova <- lapply(variaveis_dependentes, function(var) {
    mod <- aov(as.formula(paste(var, "~ Inoculante + Dia + Inoculante*Dia")), data = data)
    anova_res <- summary(mod)
    list(
      variavel = var,
      model = mod,
      anova = anova_res
    )
  })
  return(resultados_anova)
}
resultados_anova <- anova_model_all(data_all, variaveis_dependentes)
resultados_anova
[[1]]
[[1]]$variavel
[1] "NetGP24h"

[[1]]$model
Call:
   aov(formula = as.formula(paste(var, "~ Inoculante + Dia + Inoculante*Dia")), 
    data = data)

Terms:
                Inoculante       Dia Inoculante:Dia Residuals
Sum of Squares     90.2536 1030.8552       337.2843  919.0450
Deg. of Freedom          2         5             10        54

Residual standard error: 4.125452
Estimated effects may be unbalanced

[[1]]$anova
               Df Sum Sq Mean Sq F value   Pr(>F)    
Inoculante      2   90.3   45.13   2.652   0.0797 .  
Dia             5 1030.9  206.17  12.114 6.89e-08 ***
Inoculante:Dia 10  337.3   33.73   1.982   0.0537 .  
Residuals      54  919.0   17.02                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


[[2]]
[[2]]$variavel
[1] "MOVD"

[[2]]$model
Call:
   aov(formula = as.formula(paste(var, "~ Inoculante + Dia + Inoculante*Dia")), 
    data = data)

Terms:
                Inoculante        Dia Inoculante:Dia  Residuals
Sum of Squares  0.00011875 0.06185359     0.00385301 0.00746319
Deg. of Freedom          2          5             10         54

Residual standard error: 0.01175616
Estimated effects may be unbalanced

[[2]]$anova
               Df  Sum Sq  Mean Sq F value  Pr(>F)    
Inoculante      2 0.00012 0.000059   0.430 0.65297    
Dia             5 0.06185 0.012371  89.508 < 2e-16 ***
Inoculante:Dia 10 0.00385 0.000385   2.788 0.00745 ** 
Residuals      54 0.00746 0.000138                    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


[[3]]
[[3]]$variavel
[1] "DMS"

[[3]]$model
Call:
   aov(formula = as.formula(paste(var, "~ Inoculante + Dia + Inoculante*Dia")), 
    data = data)

Terms:
                Inoculante      Dia Inoculante:Dia Residuals
Sum of Squares      420.49 67633.51        4792.70   7090.89
Deg. of Freedom          2        5             10        54

Residual standard error: 11.45918
Estimated effects may be unbalanced

[[3]]$anova
               Df Sum Sq Mean Sq F value   Pr(>F)    
Inoculante      2    420     210   1.601 0.211102    
Dia             5  67634   13527 103.011  < 2e-16 ***
Inoculante:Dia 10   4793     479   3.650 0.000915 ***
Residuals      54   7091     131                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


[[4]]
[[4]]$variavel
[1] "DMO"

[[4]]$model
Call:
   aov(formula = as.formula(paste(var, "~ Inoculante + Dia + Inoculante*Dia")), 
    data = data)

Terms:
                Inoculante      Dia Inoculante:Dia Residuals
Sum of Squares      313.29 58246.12        4059.26   6890.05
Deg. of Freedom          2        5             10        54

Residual standard error: 11.29573
Estimated effects may be unbalanced

[[4]]$anova
               Df Sum Sq Mean Sq F value  Pr(>F)    
Inoculante      2    313     157   1.228 0.30101    
Dia             5  58246   11649  91.299 < 2e-16 ***
Inoculante:Dia 10   4059     406   3.181 0.00284 ** 
Residuals      54   6890     128                    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


[[5]]
[[5]]$variavel
[1] "vf"

[[5]]$model
Call:
   aov(formula = as.formula(paste(var, "~ Inoculante + Dia + Inoculante*Dia")), 
    data = data)

Terms:
                Inoculante       Dia Inoculante:Dia Residuals
Sum of Squares      67.009 13211.479       1280.915  3944.380
Deg. of Freedom          2         5             10        54

Residual standard error: 8.546582
Estimated effects may be unbalanced

[[5]]$anova
               Df Sum Sq Mean Sq F value   Pr(>F)    
Inoculante      2     67    33.5   0.459   0.6346    
Dia             5  13211  2642.3  36.174 4.49e-16 ***
Inoculante:Dia 10   1281   128.1   1.754   0.0923 .  
Residuals      54   3944    73.0                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


[[6]]
[[6]]$variavel
[1] "k"

[[6]]$model
Call:
   aov(formula = as.formula(paste(var, "~ Inoculante + Dia + Inoculante*Dia")), 
    data = data)

Terms:
                Inoculante        Dia Inoculante:Dia  Residuals
Sum of Squares  0.00102289 0.05310690     0.00577267 0.00801822
Deg. of Freedom          2          5             10         54

Residual standard error: 0.01218546
Estimated effects may be unbalanced

[[6]]$anova
               Df  Sum Sq  Mean Sq F value  Pr(>F)    
Inoculante      2 0.00102 0.000511   3.444 0.03909 *  
Dia             5 0.05311 0.010621  71.531 < 2e-16 ***
Inoculante:Dia 10 0.00577 0.000577   3.888 0.00052 ***
Residuals      54 0.00802 0.000148                    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


[[7]]
[[7]]$variavel
[1] "l"

[[7]]$model
Call:
   aov(formula = as.formula(paste(var, "~ Inoculante + Dia + Inoculante*Dia")), 
    data = data)

Terms:
                Inoculante       Dia Inoculante:Dia Residuals
Sum of Squares    0.376653  7.924345       9.116099 19.973292
Deg. of Freedom          2         5             10        54

Residual standard error: 0.6081741
Estimated effects may be unbalanced

[[7]]$anova
               Df Sum Sq Mean Sq F value  Pr(>F)   
Inoculante      2  0.377  0.1883   0.509 0.60386   
Dia             5  7.924  1.5849   4.285 0.00235 **
Inoculante:Dia 10  9.116  0.9116   2.465 0.01652 * 
Residuals      54 19.973  0.3699                   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


[[8]]
[[8]]$variavel
[1] "t0.5"

[[8]]$model
Call:
   aov(formula = as.formula(paste(var, "~ Inoculante + Dia + Inoculante*Dia")), 
    data = data)

Terms:
                Inoculante      Dia Inoculante:Dia Residuals
Sum of Squares      2.2925 356.2682        59.1779   95.1347
Deg. of Freedom          2        5             10        54

Residual standard error: 1.327311
Estimated effects may be unbalanced

[[8]]$anova
               Df Sum Sq Mean Sq F value  Pr(>F)    
Inoculante      2    2.3    1.15   0.651 0.52576    
Dia             5  356.3   71.25  40.445 < 2e-16 ***
Inoculante:Dia 10   59.2    5.92   3.359 0.00184 ** 
Residuals      54   95.1    1.76                    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


[[9]]
[[9]]$variavel
[1] "mu0.5"

[[9]]$model
Call:
   aov(formula = as.formula(paste(var, "~ Inoculante + Dia + Inoculante*Dia")), 
    data = data)

Terms:
                Inoculante       Dia Inoculante:Dia Residuals
Sum of Squares     4.91450 255.15372       27.73497  38.52377
Deg. of Freedom          2         5             10        54

Residual standard error: 0.8446319
Estimated effects may be unbalanced

[[9]]$anova
               Df Sum Sq Mean Sq F value  Pr(>F)    
Inoculante      2   4.91    2.46   3.444 0.03909 *  
Dia             5 255.15   51.03  71.531 < 2e-16 ***
Inoculante:Dia 10  27.73    2.77   3.888 0.00052 ***
Residuals      54  38.52    0.71                    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


[[10]]
[[10]]$variavel
[1] "k1"

[[10]]$model
Call:
   aov(formula = as.formula(paste(var, "~ Inoculante + Dia + Inoculante*Dia")), 
    data = data)

Terms:
                Inoculante      Dia Inoculante:Dia Residuals
Sum of Squares     10.2289 531.0690        57.7267   80.1822
Deg. of Freedom          2        5             10        54

Residual standard error: 1.218546
Estimated effects may be unbalanced

[[10]]$anova
               Df Sum Sq Mean Sq F value  Pr(>F)    
Inoculante      2   10.2    5.11   3.444 0.03909 *  
Dia             5  531.1  106.21  71.531 < 2e-16 ***
Inoculante:Dia 10   57.7    5.77   3.888 0.00052 ***
Residuals      54   80.2    1.48                    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Regressões no Fator Dia

regressao_dia_all <- function(data, variaveis_dependentes) {
  data$Dia_num <- as.numeric(as.character(data$Dia))
  resultados_regressao <- lapply(variaveis_dependentes, function(var) {
    mod_linear <- lm(as.formula(paste(var, "~ Dia_num")), data = data)
    mod_quad <- lm(as.formula(paste(var, "~ poly(Dia_num, 2)")), data = data)
    mod_cubic <- lm(as.formula(paste(var, "~ poly(Dia_num, 3)")), data = data)
    list(
      variavel = var,
      regressao = list(
        linear = summary(mod_linear),
        quadratica = summary(mod_quad),
        cubica = summary(mod_cubic)
      )
    )
  })
  return(resultados_regressao)
}

resultados_regressao = regressao_dia_all(data_all, variaveis_dependentes)
resultados_regressao
[[1]]
[[1]]$variavel
[1] "NetGP24h"

[[1]]$regressao
[[1]]$regressao$linear

Call:
lm(formula = as.formula(paste(var, "~ Dia_num")), data = data)

Residuals:
     Min       1Q   Median       3Q      Max 
-10.4856  -2.9806   0.0139   3.1125   9.8154 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  89.7773     1.2046  74.529  < 2e-16 ***
Dia_num       2.1503     0.3093   6.952 1.53e-09 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.482 on 70 degrees of freedom
Multiple R-squared:  0.4084,    Adjusted R-squared:    0.4 
F-statistic: 48.33 on 1 and 70 DF,  p-value: 1.528e-09


[[1]]$regressao$quadratica

Call:
lm(formula = as.formula(paste(var, "~ poly(Dia_num, 2)")), data = data)

Residuals:
     Min       1Q   Median       3Q      Max 
-10.5376  -2.8038   0.4224   2.7173   9.9497 

Coefficients:
                  Estimate Std. Error t value Pr(>|t|)    
(Intercept)        97.3034     0.5286 184.073  < 2e-16 ***
poly(Dia_num, 2)1  31.1613     4.4854   6.947 1.66e-09 ***
poly(Dia_num, 2)2   4.2648     4.4854   0.951    0.345    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.485 on 69 degrees of freedom
Multiple R-squared:  0.4161,    Adjusted R-squared:  0.3992 
F-statistic: 24.58 on 2 and 69 DF,  p-value: 8.691e-09


[[1]]$regressao$cubica

Call:
lm(formula = as.formula(paste(var, "~ poly(Dia_num, 3)")), data = data)

Residuals:
     Min       1Q   Median       3Q      Max 
-10.5313  -2.8116   0.4162   2.7198   9.9585 

Coefficients:
                  Estimate Std. Error t value Pr(>|t|)    
(Intercept)       97.30343    0.53249 182.734  < 2e-16 ***
poly(Dia_num, 3)1 31.16129    4.51830   6.897 2.18e-09 ***
poly(Dia_num, 3)2  4.26480    4.51830   0.944    0.349    
poly(Dia_num, 3)3 -0.05831    4.51830  -0.013    0.990    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.518 on 68 degrees of freedom
Multiple R-squared:  0.4161,    Adjusted R-squared:  0.3903 
F-statistic: 16.15 on 3 and 68 DF,  p-value: 4.976e-08




[[2]]
[[2]]$variavel
[1] "MOVD"

[[2]]$regressao
[[2]]$regressao$linear

Call:
lm(formula = as.formula(paste(var, "~ Dia_num")), data = data)

Residuals:
      Min        1Q    Median        3Q       Max 
-0.040230 -0.007131 -0.000464  0.009477  0.030238 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 0.7828611  0.0037050  211.30   <2e-16 ***
Dia_num     0.0169008  0.0009514   17.77   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.01379 on 70 degrees of freedom
Multiple R-squared:  0.8185,    Adjusted R-squared:  0.8159 
F-statistic: 315.6 on 1 and 70 DF,  p-value: < 2.2e-16


[[2]]$regressao$quadratica

Call:
lm(formula = as.formula(paste(var, "~ poly(Dia_num, 2)")), data = data)

Residuals:
      Min        1Q    Median        3Q       Max 
-0.036163 -0.006843  0.000762  0.008345  0.031021 

Coefficients:
                  Estimate Std. Error t value Pr(>|t|)    
(Intercept)       0.842014   0.001571 535.945   <2e-16 ***
poly(Dia_num, 2)1 0.244916   0.013331  18.372   <2e-16 ***
poly(Dia_num, 2)2 0.032284   0.013331   2.422   0.0181 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.01333 on 69 degrees of freedom
Multiple R-squared:  0.8327,    Adjusted R-squared:  0.8278 
F-statistic: 171.7 on 2 and 69 DF,  p-value: < 2.2e-16


[[2]]$regressao$cubica

Call:
lm(formula = as.formula(paste(var, "~ poly(Dia_num, 3)")), data = data)

Residuals:
      Min        1Q    Median        3Q       Max 
-0.038505 -0.005334  0.001455  0.007722  0.028082 

Coefficients:
                  Estimate Std. Error t value Pr(>|t|)    
(Intercept)       0.842014   0.001534 548.886   <2e-16 ***
poly(Dia_num, 3)1 0.244916   0.013017  18.815   <2e-16 ***
poly(Dia_num, 3)2 0.032284   0.013017   2.480   0.0156 *  
poly(Dia_num, 3)3 0.027218   0.013017   2.091   0.0403 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.01302 on 68 degrees of freedom
Multiple R-squared:  0.8428,    Adjusted R-squared:  0.8359 
F-statistic: 121.5 on 3 and 68 DF,  p-value: < 2.2e-16




[[3]]
[[3]]$variavel
[1] "DMS"

[[3]]$regressao
[[3]]$regressao$linear

Call:
lm(formula = as.formula(paste(var, "~ Dia_num")), data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-46.267  -5.214   2.596   8.224  36.430 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 849.2685     3.7305  227.66   <2e-16 ***
Dia_num      17.7884     0.9579   18.57   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 13.88 on 70 degrees of freedom
Multiple R-squared:  0.8313,    Adjusted R-squared:  0.8289 
F-statistic: 344.9 on 1 and 70 DF,  p-value: < 2.2e-16


[[3]]$regressao$quadratica

Call:
lm(formula = as.formula(paste(var, "~ poly(Dia_num, 2)")), data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-45.681  -4.738   2.429   7.816  35.697 

Coefficients:
                  Estimate Std. Error t value Pr(>|t|)    
(Intercept)        911.528      1.646 553.648   <2e-16 ***
poly(Dia_num, 2)1  257.778     13.970  18.452   <2e-16 ***
poly(Dia_num, 2)2    4.653     13.970   0.333     0.74    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 13.97 on 69 degrees of freedom
Multiple R-squared:  0.8315,    Adjusted R-squared:  0.8267 
F-statistic: 170.3 on 2 and 69 DF,  p-value: < 2.2e-16


[[3]]$regressao$cubica

Call:
lm(formula = as.formula(paste(var, "~ poly(Dia_num, 3)")), data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-43.043  -6.862   2.270   7.629  32.400 

Coefficients:
                  Estimate Std. Error t value Pr(>|t|)    
(Intercept)        911.528      1.600 569.858   <2e-16 ***
poly(Dia_num, 3)1  257.778     13.573  18.992   <2e-16 ***
poly(Dia_num, 3)2    4.653     13.573   0.343   0.7328    
poly(Dia_num, 3)3  -30.651     13.573  -2.258   0.0271 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 13.57 on 68 degrees of freedom
Multiple R-squared:  0.8433,    Adjusted R-squared:  0.8364 
F-statistic:   122 on 3 and 68 DF,  p-value: < 2.2e-16




[[4]]
[[4]]$variavel
[1] "DMO"

[[4]]$regressao
[[4]]$regressao$linear

Call:
lm(formula = as.formula(paste(var, "~ Dia_num")), data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-42.887  -5.179   1.799   6.431  30.637 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 850.2434     3.5112  242.15   <2e-16 ***
Dia_num      16.5558     0.9016   18.36   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 13.07 on 70 degrees of freedom
Multiple R-squared:  0.8281,    Adjusted R-squared:  0.8256 
F-statistic: 337.2 on 1 and 70 DF,  p-value: < 2.2e-16


[[4]]$regressao$quadratica

Call:
lm(formula = as.formula(paste(var, "~ poly(Dia_num, 2)")), data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-43.468  -5.651   1.765   6.540  31.364 

Coefficients:
                  Estimate Std. Error t value Pr(>|t|)    
(Intercept)         908.19       1.55 586.117   <2e-16 ***
poly(Dia_num, 2)1   239.92      13.15  18.247   <2e-16 ***
poly(Dia_num, 2)2    -4.61      13.15  -0.351    0.727    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 13.15 on 69 degrees of freedom
Multiple R-squared:  0.8284,    Adjusted R-squared:  0.8234 
F-statistic: 166.5 on 2 and 69 DF,  p-value: < 2.2e-16


[[4]]$regressao$cubica

Call:
lm(formula = as.formula(paste(var, "~ poly(Dia_num, 3)")), data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-41.548  -4.368   0.838   7.565  28.964 

Coefficients:
                  Estimate Std. Error t value Pr(>|t|)    
(Intercept)        908.189      1.528 594.386   <2e-16 ***
poly(Dia_num, 3)1  239.916     12.965  18.505   <2e-16 ***
poly(Dia_num, 3)2   -4.610     12.965  -0.356   0.7233    
poly(Dia_num, 3)3  -22.308     12.965  -1.721   0.0899 .  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 12.97 on 68 degrees of freedom
Multiple R-squared:  0.8356,    Adjusted R-squared:  0.8283 
F-statistic: 115.2 on 3 and 68 DF,  p-value: < 2.2e-16




[[5]]
[[5]]$variavel
[1] "vf"

[[5]]$regressao
[[5]]$regressao$linear

Call:
lm(formula = as.formula(paste(var, "~ Dia_num")), data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-29.777  -9.195  -0.238   8.072  32.980 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 142.0655     3.6560  38.858  < 2e-16 ***
Dia_num      -5.1402     0.9388  -5.475 6.42e-07 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 13.6 on 70 degrees of freedom
Multiple R-squared:  0.2999,    Adjusted R-squared:  0.2899 
F-statistic: 29.98 on 1 and 70 DF,  p-value: 6.425e-07


[[5]]$regressao$quadratica

Call:
lm(formula = as.formula(paste(var, "~ poly(Dia_num, 2)")), data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-20.465  -6.712  -1.543   3.620  35.308 

Coefficients:
                  Estimate Std. Error t value Pr(>|t|)    
(Intercept)        124.075      1.228 101.032  < 2e-16 ***
poly(Dia_num, 2)1  -74.488     10.421  -7.148 7.16e-10 ***
poly(Dia_num, 2)2   73.910     10.421   7.093 9.03e-10 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 10.42 on 69 degrees of freedom
Multiple R-squared:  0.5951,    Adjusted R-squared:  0.5833 
F-statistic:  50.7 on 2 and 69 DF,  p-value: 2.846e-14


[[5]]$regressao$cubica

Call:
lm(formula = as.formula(paste(var, "~ poly(Dia_num, 3)")), data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-19.619  -5.981  -1.414   3.873  36.788 

Coefficients:
                  Estimate Std. Error t value Pr(>|t|)    
(Intercept)        124.075      1.229 100.950  < 2e-16 ***
poly(Dia_num, 3)1  -74.488     10.429  -7.142 7.86e-10 ***
poly(Dia_num, 3)2   73.910     10.429   7.087 9.89e-10 ***
poly(Dia_num, 3)3   -9.827     10.429  -0.942    0.349    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 10.43 on 68 degrees of freedom
Multiple R-squared:  0.6003,    Adjusted R-squared:  0.5827 
F-statistic: 34.04 on 3 and 68 DF,  p-value: 1.497e-13




[[6]]
[[6]]$variavel
[1] "k"

[[6]]$regressao
[[6]]$regressao$linear

Call:
lm(formula = as.formula(paste(var, "~ Dia_num")), data = data)

Residuals:
      Min        1Q    Median        3Q       Max 
-0.044735 -0.019024  0.000465  0.016430  0.050255 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 0.099370   0.006071  16.368  < 2e-16 ***
Dia_num     0.012382   0.001559   7.943 2.33e-11 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.02259 on 70 degrees of freedom
Multiple R-squared:  0.4741,    Adjusted R-squared:  0.4665 
F-statistic: 63.09 on 1 and 70 DF,  p-value: 2.325e-11


[[6]]$regressao$quadratica

Call:
lm(formula = as.formula(paste(var, "~ poly(Dia_num, 2)")), data = data)

Residuals:
      Min        1Q    Median        3Q       Max 
-0.040889 -0.007794  0.001380  0.012195  0.036363 

Coefficients:
                   Estimate Std. Error t value Pr(>|t|)    
(Intercept)        0.142708   0.002178  65.524  < 2e-16 ***
poly(Dia_num, 2)1  0.179438   0.018481   9.710 1.55e-14 ***
poly(Dia_num, 2)2 -0.110259   0.018481  -5.966 9.35e-08 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.01848 on 69 degrees of freedom
Multiple R-squared:  0.653, Adjusted R-squared:  0.643 
F-statistic: 64.94 on 2 and 69 DF,  p-value: < 2.2e-16


[[6]]$regressao$cubica

Call:
lm(formula = as.formula(paste(var, "~ poly(Dia_num, 3)")), data = data)

Residuals:
      Min        1Q    Median        3Q       Max 
-0.040799 -0.007924  0.001348  0.012155  0.036259 

Coefficients:
                   Estimate Std. Error t value Pr(>|t|)    
(Intercept)        0.142708   0.002194  65.050  < 2e-16 ***
poly(Dia_num, 3)1  0.179438   0.018615   9.639 2.40e-14 ***
poly(Dia_num, 3)2 -0.110259   0.018615  -5.923 1.16e-07 ***
poly(Dia_num, 3)3  0.001214   0.018615   0.065    0.948    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.01862 on 68 degrees of freedom
Multiple R-squared:  0.6531,    Adjusted R-squared:  0.6378 
F-statistic: 42.67 on 3 and 68 DF,  p-value: 1.265e-15




[[7]]
[[7]]$variavel
[1] "l"

[[7]]$regressao
[[7]]$regressao$linear

Call:
lm(formula = as.formula(paste(var, "~ Dia_num")), data = data)

Residuals:
     Min       1Q   Median       3Q      Max 
-2.04228 -0.33838  0.06733  0.38693  1.75347 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  5.70633    0.19433  29.364   <2e-16 ***
Dia_num     -0.06126    0.04990  -1.228    0.224    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.7231 on 70 degrees of freedom
Multiple R-squared:  0.02108,   Adjusted R-squared:  0.007091 
F-statistic: 1.507 on 1 and 70 DF,  p-value: 0.2237


[[7]]$regressao$quadratica

Call:
lm(formula = as.formula(paste(var, "~ poly(Dia_num, 2)")), data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-2.0510 -0.3079  0.0699  0.3717  1.7971 

Coefficients:
                  Estimate Std. Error t value Pr(>|t|)    
(Intercept)        5.49192    0.08574  64.050   <2e-16 ***
poly(Dia_num, 2)1 -0.88770    0.72757  -1.220    0.227    
poly(Dia_num, 2)2 -0.27685    0.72757  -0.381    0.705    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.7276 on 69 degrees of freedom
Multiple R-squared:  0.02313,   Adjusted R-squared:  -0.00519 
F-statistic: 0.8167 on 2 and 69 DF,  p-value: 0.4461


[[7]]$regressao$cubica

Call:
lm(formula = as.formula(paste(var, "~ poly(Dia_num, 3)")), data = data)

Residuals:
     Min       1Q   Median       3Q      Max 
-1.87295 -0.33443  0.02747  0.43132  1.66990 

Coefficients:
                  Estimate Std. Error t value Pr(>|t|)    
(Intercept)         5.4919     0.0847  64.836   <2e-16 ***
poly(Dia_num, 3)1  -0.8877     0.7187  -1.235    0.221    
poly(Dia_num, 3)2  -0.2768     0.7187  -0.385    0.701    
poly(Dia_num, 3)3  -1.1822     0.7187  -1.645    0.105    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.7187 on 68 degrees of freedom
Multiple R-squared:  0.0605,    Adjusted R-squared:  0.01905 
F-statistic:  1.46 on 3 and 68 DF,  p-value: 0.2333




[[8]]
[[8]]$variavel
[1] "t0.5"

[[8]]$regressao
[[8]]$regressao$linear

Call:
lm(formula = as.formula(paste(var, "~ Dia_num")), data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-3.0434 -1.6462 -0.0949  1.5654  4.2296 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  19.4518     0.5154  37.742  < 2e-16 ***
Dia_num      -1.1029     0.1323  -8.333 4.44e-12 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.918 on 70 degrees of freedom
Multiple R-squared:  0.498, Adjusted R-squared:  0.4908 
F-statistic: 69.45 on 1 and 70 DF,  p-value: 4.44e-12


[[8]]$regressao$quadratica

Call:
lm(formula = as.formula(paste(var, "~ poly(Dia_num, 2)")), data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-3.3286 -1.2179 -0.2792  1.1032  4.3261 

Coefficients:
                  Estimate Std. Error t value Pr(>|t|)    
(Intercept)        15.5918     0.1896  82.224  < 2e-16 ***
poly(Dia_num, 2)1 -15.9819     1.6090  -9.933 6.16e-15 ***
poly(Dia_num, 2)2   8.8777     1.6090   5.517 5.61e-07 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.609 on 69 degrees of freedom
Multiple R-squared:  0.6517,    Adjusted R-squared:  0.6416 
F-statistic: 64.55 on 2 and 69 DF,  p-value: < 2.2e-16


[[8]]$regressao$cubica

Call:
lm(formula = as.formula(paste(var, "~ poly(Dia_num, 3)")), data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-3.4989 -1.2882 -0.2327  0.9329  4.5644 

Coefficients:
                  Estimate Std. Error t value Pr(>|t|)    
(Intercept)        15.5918     0.1897  82.204  < 2e-16 ***
poly(Dia_num, 3)1 -15.9819     1.6094  -9.930 7.27e-15 ***
poly(Dia_num, 3)2   8.8777     1.6094   5.516 5.83e-07 ***
poly(Dia_num, 3)3  -1.5827     1.6094  -0.983    0.329    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.609 on 68 degrees of freedom
Multiple R-squared:  0.6566,    Adjusted R-squared:  0.6414 
F-statistic: 43.33 on 3 and 68 DF,  p-value: 8.978e-16




[[9]]
[[9]]$variavel
[1] "mu0.5"

[[9]]$regressao
[[9]]$regressao$linear

Call:
lm(formula = as.formula(paste(var, "~ Dia_num")), data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-3.1008 -1.3186  0.0322  1.1388  3.4834 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   6.8878     0.4208  16.368  < 2e-16 ***
Dia_num       0.8583     0.1081   7.943 2.33e-11 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.566 on 70 degrees of freedom
Multiple R-squared:  0.4741,    Adjusted R-squared:  0.4665 
F-statistic: 63.09 on 1 and 70 DF,  p-value: 2.325e-11


[[9]]$regressao$quadratica

Call:
lm(formula = as.formula(paste(var, "~ poly(Dia_num, 2)")), data = data)

Residuals:
     Min       1Q   Median       3Q      Max 
-2.83424 -0.54022  0.09567  0.84527  2.52050 

Coefficients:
                  Estimate Std. Error t value Pr(>|t|)    
(Intercept)          9.892      0.151  65.524  < 2e-16 ***
poly(Dia_num, 2)1   12.438      1.281   9.710 1.55e-14 ***
poly(Dia_num, 2)2   -7.643      1.281  -5.966 9.35e-08 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.281 on 69 degrees of freedom
Multiple R-squared:  0.653, Adjusted R-squared:  0.643 
F-statistic: 64.94 on 2 and 69 DF,  p-value: < 2.2e-16


[[9]]$regressao$cubica

Call:
lm(formula = as.formula(paste(var, "~ poly(Dia_num, 3)")), data = data)

Residuals:
     Min       1Q   Median       3Q      Max 
-2.82799 -0.54927  0.09344  0.84254  2.51326 

Coefficients:
                  Estimate Std. Error t value Pr(>|t|)    
(Intercept)        9.89178    0.15207  65.050  < 2e-16 ***
poly(Dia_num, 3)1 12.43769    1.29032   9.639 2.40e-14 ***
poly(Dia_num, 3)2 -7.64261    1.29032  -5.923 1.16e-07 ***
poly(Dia_num, 3)3  0.08413    1.29032   0.065    0.948    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.29 on 68 degrees of freedom
Multiple R-squared:  0.6531,    Adjusted R-squared:  0.6378 
F-statistic: 42.67 on 3 and 68 DF,  p-value: 1.265e-15




[[10]]
[[10]]$variavel
[1] "k1"

[[10]]$regressao
[[10]]$regressao$linear

Call:
lm(formula = as.formula(paste(var, "~ Dia_num")), data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-4.4735 -1.9024  0.0465  1.6430  5.0255 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   9.9370     0.6071  16.368  < 2e-16 ***
Dia_num       1.2382     0.1559   7.943 2.33e-11 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.259 on 70 degrees of freedom
Multiple R-squared:  0.4741,    Adjusted R-squared:  0.4665 
F-statistic: 63.09 on 1 and 70 DF,  p-value: 2.325e-11


[[10]]$regressao$quadratica

Call:
lm(formula = as.formula(paste(var, "~ poly(Dia_num, 2)")), data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-4.0889 -0.7794  0.1380  1.2195  3.6363 

Coefficients:
                  Estimate Std. Error t value Pr(>|t|)    
(Intercept)        14.2708     0.2178  65.524  < 2e-16 ***
poly(Dia_num, 2)1  17.9438     1.8481   9.710 1.55e-14 ***
poly(Dia_num, 2)2 -11.0259     1.8481  -5.966 9.35e-08 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.848 on 69 degrees of freedom
Multiple R-squared:  0.653, Adjusted R-squared:  0.643 
F-statistic: 64.94 on 2 and 69 DF,  p-value: < 2.2e-16


[[10]]$regressao$cubica

Call:
lm(formula = as.formula(paste(var, "~ poly(Dia_num, 3)")), data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-4.0799 -0.7924  0.1348  1.2155  3.6259 

Coefficients:
                  Estimate Std. Error t value Pr(>|t|)    
(Intercept)        14.2708     0.2194  65.050  < 2e-16 ***
poly(Dia_num, 3)1  17.9438     1.8615   9.639 2.40e-14 ***
poly(Dia_num, 3)2 -11.0259     1.8615  -5.923 1.16e-07 ***
poly(Dia_num, 3)3   0.1214     1.8615   0.065    0.948    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.862 on 68 degrees of freedom
Multiple R-squared:  0.6531,    Adjusted R-squared:  0.6378 
F-statistic: 42.67 on 3 and 68 DF,  p-value: 1.265e-15

Plot PG

str(data_all)
gropd_df [72 × 25] (S3: grouped_df/tbl_df/tbl/data.frame)
 $ Dieta     : Factor w/ 72 levels "LBLHR1D1","LBLHR1D2",..: 1 2 3 4 5 6 7 8 9 10 ...
 $ Inoculante: Factor w/ 3 levels "1","2","3": 3 3 3 3 3 3 3 3 3 3 ...
 $ Dia       : Factor w/ 6 levels "1","2","3","4",..: 1 2 3 4 5 6 1 2 3 4 ...
 $ Rep       : num [1:72] 1 1 1 1 1 1 2 2 2 2 ...
 $ T0        : num [1:72] 1.613 1.213 -0.443 -0.28 1.547 ...
 $ T2        : num [1:72] 4.29 3.56 1.47 1.08 2.6 ...
 $ T4        : num [1:72] 7.343 7.253 2.413 0.853 7.947 ...
 $ T6        : num [1:72] 10.4 12.64 8.28 4.18 11.49 ...
 $ T8        : num [1:72] 16.2 20.7 19.1 11.7 18.2 ...
 $ T10       : num [1:72] 23.1 28.9 31.4 21.4 25.7 ...
 $ T12       : num [1:72] 32.6 39.1 46.6 33.1 37.2 ...
 $ T15       : num [1:72] 47.6 55.7 68 53.4 59 ...
 $ T18       : num [1:72] 65.6 71.9 82.6 70.6 76.6 ...
 $ T21       : num [1:72] 81 85.2 93.5 84.1 90.2 ...
 $ T24       : num [1:72] 91.9 94.5 100.4 92.4 99.3 ...
 $ NetGP24h  : num [1:72] 91.9 94.5 100.4 92.4 99.3 ...
 $ MOVD      : num [1:72] 0.797 0.817 0.83 0.85 0.853 ...
 $ DMS       : num [1:72] 871 876 909 932 931 ...
 $ DMO       : num [1:72] 866 878 905 925 926 ...
 $ vf        : num [1:72] 152 128 110 109 133 ...
 $ k         : num [1:72] 0.0948 0.1146 0.1833 0.1665 0.1239 ...
 $ l         : num [1:72] 5.87 4.63 5.71 6.94 5.47 ...
 $ t0.5      : num [1:72] 20.3 16.6 13.2 15.2 16.5 ...
 $ mu0.5     : num [1:72] 6.57 7.94 12.71 11.54 8.59 ...
 $ k1        : num [1:72] 9.48 11.46 18.33 16.65 12.39 ...
 - attr(*, "groups")= tibble [72 × 3] (S3: tbl_df/tbl/data.frame)
  ..$ Dieta     : Factor w/ 72 levels "LBLHR1D1","LBLHR1D2",..: 1 2 3 4 5 6 7 8 9 10 ...
  ..$ Inoculante: Factor w/ 3 levels "1","2","3": 3 3 3 3 3 3 3 3 3 3 ...
  ..$ .rows     : list<int> [1:72] 
  .. ..$ : int 1
  .. ..$ : int 2
  .. ..$ : int 3
  .. ..$ : int 4
  .. ..$ : int 5
  .. ..$ : int 6
  .. ..$ : int 7
  .. ..$ : int 8
  .. ..$ : int 9
  .. ..$ : int 10
  .. ..$ : int 11
  .. ..$ : int 12
  .. ..$ : int 13
  .. ..$ : int 14
  .. ..$ : int 15
  .. ..$ : int 16
  .. ..$ : int 17
  .. ..$ : int 18
  .. ..$ : int 19
  .. ..$ : int 20
  .. ..$ : int 21
  .. ..$ : int 22
  .. ..$ : int 23
  .. ..$ : int 24
  .. ..$ : int 25
  .. ..$ : int 26
  .. ..$ : int 27
  .. ..$ : int 28
  .. ..$ : int 29
  .. ..$ : int 30
  .. ..$ : int 31
  .. ..$ : int 32
  .. ..$ : int 33
  .. ..$ : int 34
  .. ..$ : int 35
  .. ..$ : int 36
  .. ..$ : int 37
  .. ..$ : int 38
  .. ..$ : int 39
  .. ..$ : int 40
  .. ..$ : int 41
  .. ..$ : int 42
  .. ..$ : int 43
  .. ..$ : int 44
  .. ..$ : int 45
  .. ..$ : int 46
  .. ..$ : int 47
  .. ..$ : int 48
  .. ..$ : int 49
  .. ..$ : int 50
  .. ..$ : int 51
  .. ..$ : int 52
  .. ..$ : int 53
  .. ..$ : int 54
  .. ..$ : int 55
  .. ..$ : int 56
  .. ..$ : int 57
  .. ..$ : int 58
  .. ..$ : int 59
  .. ..$ : int 60
  .. ..$ : int 61
  .. ..$ : int 62
  .. ..$ : int 63
  .. ..$ : int 64
  .. ..$ : int 65
  .. ..$ : int 66
  .. ..$ : int 67
  .. ..$ : int 68
  .. ..$ : int 69
  .. ..$ : int 70
  .. ..$ : int 71
  .. ..$ : int 72
  .. ..@ ptype: int(0) 
  ..- attr(*, ".drop")= logi TRUE
m1=lm(NetGP24h~as.numeric(Dia),data=data_all)
summary(m1)

Call:
lm(formula = NetGP24h ~ as.numeric(Dia), data = data_all)

Residuals:
     Min       1Q   Median       3Q      Max 
-10.4856  -2.9806   0.0139   3.1125   9.8154 

Coefficients:
                Estimate Std. Error t value Pr(>|t|)    
(Intercept)      89.7773     1.2046  74.529  < 2e-16 ***
as.numeric(Dia)   2.1503     0.3093   6.952 1.53e-09 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.482 on 70 degrees of freedom
Multiple R-squared:  0.4084,    Adjusted R-squared:    0.4 
F-statistic: 48.33 on 1 and 70 DF,  p-value: 1.528e-09
plot1 = ggplot(data_all, aes(x = as.numeric(Dia), y = NetGP24h, group = Inoculante, color = as.factor(Inoculante))) +
  geom_smooth(method = 'lm', formula = y ~ x, se = TRUE, size = 0.25, aes(linetype = as.factor(Inoculante))) + 
  geom_point(size = 1) +
  scale_x_continuous(name = expression(paste("Tempo de fermentação (Dias)")), 
                     breaks = 1:6,labels = c("15 dias", "30 dias", "45 dias", "60 dias", "75 dias", "90 dias"))+
  scale_y_continuous(name = expression(paste("Produção de gás (mL ", g^-1, "MS)")),breaks = seq(40, 140, 20),limits = c(40, 140))+
  scale_color_manual(name = "Inoculante",values = c("blue4", "red4", "green4"),labels = c("TC", "LB", "LHLB"))+
  scale_linetype_manual(name = "Inoculante",values = c(1, 1, 1),labels = c("TC", "LB", "LHLB"))
plot1

plot2=plot1+ theme(axis.line = element_line(colour = "black", size = 0.5, linetype = "solid"),
  panel.background = element_rect(fill = "transparent"),
  axis.ticks = element_line(colour = "black", size = 0.25),
  axis.title.x = element_text(size = 14, color = "black"),
  axis.title.y = element_text(size = 14, color = "black"),
  axis.text.x = element_text(size = 12,  angle = 25, hjust = 1, color = "black"),
  axis.text.y = element_text(size = 12, color = "black"),
  legend.background = element_rect(fill = "transparent", size=0.5, linetype="solid",colour ="black"),
  legend.position = c(0.15, 0.85),legend.key.size = unit(0.42, 'cm'),
  legend.text = element_text(size = 13),
  legend.title = element_text(size = 14))+
annotate(geom="text", y=70, x=3.5,label=expression(paste("y = 2.15x + 89.7  ", R^2, " = 0.41")),size=5,color="black")+
annotate("text",size=5, x=5, y=140,label="P values")+
annotate("text",size=4, x=5, y=133,label= "Inoculante = 0.080")+
annotate("text",size=4, x=5, y=127,label= "Dias = <0.01")+
annotate("text",size=4, x=5, y=121,label= "I * D = 0.054")+
coord_fixed(ratio = 6/140)
plot2

ggsave("Plot_PG.png", plot2, width = 6, height = 5, units = "in", dpi = 300)

Desdobramento de Inoculo vs Dia


DMO=fat2.dic(data_all$Inoculante,data_all$Dia, data_all$DMO,quali = c(TRUE, TRUE),mcomp = "tukey",fac.names = c("Inoculante", "Dias"),sigT = 0.05,sigF = 0.05,unfold = NULL)
------------------------------------------------------------------------
Legenda:
FATOR 1:  Inoculante 
FATOR 2:  Dias 
------------------------------------------------------------------------


Quadro da analise de variancia
------------------------------------------------------------------------
                GL    SQ QM     Fc   Pr>Fc
Inoculante       2   313  4  1.228 0.30101
Dias             5 58246  2 91.299 0.00000
Inoculante*Dias 10  4059  5  3.181 0.00284
Residuo         54  6890  3               
Total           71 69509  1               
------------------------------------------------------------------------
CV = 1.24 %

------------------------------------------------------------------------
Teste de normalidade dos residuos (Shapiro-Wilk)
valor-p:  0.1408589 
De acordo com o teste de Shapiro-Wilk a 5% de significancia, os residuos podem ser considerados normais.
------------------------------------------------------------------------



Interacao significativa: desdobrando a interacao
------------------------------------------------------------------------

Desdobrando  Inoculante  dentro de cada nivel de  Dias 
------------------------------------------------------------------------
------------------------------------------------------------------------
Quadro da analise de variancia
------------------------------------------------------------------------
------------------------------------------------------------------------



 Inoculante  dentro do nivel  1  de  Dias 
------------------------------------------------------------------------
Teste de Tukey
------------------------------------------------------------------------
Grupos Tratamentos Medias
a    1   885.375 
 b   2   865.0325 
 b   3   854.6208 
------------------------------------------------------------------------


 Inoculante  dentro do nivel  2  de  Dias 

De acordo com o teste F, as medias desse fator sao estatisticamente iguais.
------------------------------------------------------------------------
------------------------------------------------------------------------


 Inoculante  dentro do nivel  3  de  Dias 
------------------------------------------------------------------------
Teste de Tukey
------------------------------------------------------------------------
Grupos Tratamentos Medias
a    3   905.7425 
ab   2   900.345 
 b   1   883.2533 
------------------------------------------------------------------------


 Inoculante  dentro do nivel  4  de  Dias 

De acordo com o teste F, as medias desse fator sao estatisticamente iguais.
------------------------------------------------------------------------
------------------------------------------------------------------------


 Inoculante  dentro do nivel  5  de  Dias 

De acordo com o teste F, as medias desse fator sao estatisticamente iguais.
------------------------------------------------------------------------
------------------------------------------------------------------------


 Inoculante  dentro do nivel  6  de  Dias 

De acordo com o teste F, as medias desse fator sao estatisticamente iguais.
------------------------------------------------------------------------
------------------------------------------------------------------------



Desdobrando  Dias  dentro de cada nivel de  Inoculante 
------------------------------------------------------------------------
------------------------------------------------------------------------
Quadro da analise de variancia
------------------------------------------------------------------------
------------------------------------------------------------------------



 Dias  dentro do nivel  1  de  Inoculante 
------------------------------------------------------------------------
Teste de Tukey
------------------------------------------------------------------------
Grupos Tratamentos Medias
a    6   941.5967 
a    5   931.1375 
a    4   918.6 
 b   1   885.375 
 b   3   883.2533 
 b   2   871.5608 
------------------------------------------------------------------------


 Dias  dentro do nivel  2  de  Inoculante 
------------------------------------------------------------------------
Teste de Tukey
------------------------------------------------------------------------
Grupos Tratamentos Medias
a    6   947.74 
ab   5   939.0742 
 bc      4   916.115 
  cd     3   900.345 
   de    2   888.0675 
    e    1   865.0325 
------------------------------------------------------------------------


 Dias  dentro do nivel  3  de  Inoculante 
------------------------------------------------------------------------
Teste de Tukey
------------------------------------------------------------------------
Grupos Tratamentos Medias
a    6   951.0258 
a    5   934.9525 
a    4   929.7917 
 b   3   905.7425 
 b   2   883.3633 
  c      1   854.6208 
------------------------------------------------------------------------
LAG=fat2.dic(data_all$Inoculante,data_all$Dia, data_all$l,quali = c(TRUE, TRUE),mcomp = "tukey",fac.names = c("Inoculante", "Dias"),sigT = 0.05,sigF = 0.05,unfold = NULL)
------------------------------------------------------------------------
Legenda:
FATOR 1:  Inoculante 
FATOR 2:  Dias 
------------------------------------------------------------------------


Quadro da analise de variancia
------------------------------------------------------------------------
                GL     SQ QM     Fc   Pr>Fc
Inoculante       2  0.377  2 0.5092 0.60386
Dias             5  7.924  5 4.2849 0.00235
Inoculante*Dias 10  9.116  4 2.4646 0.01652
Residuo         54 19.973  3               
Total           71 37.390  1               
------------------------------------------------------------------------
CV = 11.07 %

------------------------------------------------------------------------
Teste de normalidade dos residuos (Shapiro-Wilk)
valor-p:  0.8117588 
De acordo com o teste de Shapiro-Wilk a 5% de significancia, os residuos podem ser considerados normais.
------------------------------------------------------------------------



Interacao significativa: desdobrando a interacao
------------------------------------------------------------------------

Desdobrando  Inoculante  dentro de cada nivel de  Dias 
------------------------------------------------------------------------
------------------------------------------------------------------------
Quadro da analise de variancia
------------------------------------------------------------------------
------------------------------------------------------------------------



 Inoculante  dentro do nivel  1  de  Dias 

De acordo com o teste F, as medias desse fator sao estatisticamente iguais.
------------------------------------------------------------------------
------------------------------------------------------------------------


 Inoculante  dentro do nivel  2  de  Dias 
------------------------------------------------------------------------
Teste de Tukey
------------------------------------------------------------------------
Grupos Tratamentos Medias
a    1   5.907296 
 b   2   4.862305 
 b   3   4.351375 
------------------------------------------------------------------------


 Inoculante  dentro do nivel  3  de  Dias 

De acordo com o teste F, as medias desse fator sao estatisticamente iguais.
------------------------------------------------------------------------
------------------------------------------------------------------------


 Inoculante  dentro do nivel  4  de  Dias 

De acordo com o teste F, as medias desse fator sao estatisticamente iguais.
------------------------------------------------------------------------
------------------------------------------------------------------------


 Inoculante  dentro do nivel  5  de  Dias 

De acordo com o teste F, as medias desse fator sao estatisticamente iguais.
------------------------------------------------------------------------
------------------------------------------------------------------------


 Inoculante  dentro do nivel  6  de  Dias 

De acordo com o teste F, as medias desse fator sao estatisticamente iguais.
------------------------------------------------------------------------
------------------------------------------------------------------------



Desdobrando  Dias  dentro de cada nivel de  Inoculante 
------------------------------------------------------------------------
------------------------------------------------------------------------
Quadro da analise de variancia
------------------------------------------------------------------------
------------------------------------------------------------------------



 Dias  dentro do nivel  1  de  Inoculante 

De acordo com o teste F, as medias desse fator sao estatisticamente iguais.
------------------------------------------------------------------------
------------------------------------------------------------------------


 Dias  dentro do nivel  2  de  Inoculante 
------------------------------------------------------------------------
Teste de Tukey
------------------------------------------------------------------------
Grupos Tratamentos Medias
a    1   6.099995 
a    4   6.079671 
a    3   5.440338 
a    6   5.211431 
a    2   4.862305 
a    5   4.840571 
------------------------------------------------------------------------


 Dias  dentro do nivel  3  de  Inoculante 
------------------------------------------------------------------------
Teste de Tukey
------------------------------------------------------------------------
Grupos Tratamentos Medias
a    4   6.164046 
a    3   6.061047 
a    1   5.772523 
a    5   5.688424 
ab   6   5.512526 
 b   2   4.351375 
------------------------------------------------------------------------
LAG.mean= data_all %>%group_by(Inoculante, Dia) %>% summarise(Media = mean(l))
`summarise()` has grouped output by 'Inoculante'. You can override using the `.groups` argument.
LAG.mean

LAG=fat2.dic(data_all$Inoculante,data_all$Dia, data_all$l,quali = c(TRUE, TRUE),mcomp = "tukey",fac.names = c("Inoculante", "Dias"),sigT = 0.05,sigF = 0.05,unfold = NULL)
------------------------------------------------------------------------
Legenda:
FATOR 1:  Inoculante 
FATOR 2:  Dias 
------------------------------------------------------------------------


Quadro da analise de variancia
------------------------------------------------------------------------
                GL     SQ QM     Fc   Pr>Fc
Inoculante       2  0.377  2 0.5092 0.60386
Dias             5  7.924  5 4.2849 0.00235
Inoculante*Dias 10  9.116  4 2.4646 0.01652
Residuo         54 19.973  3               
Total           71 37.390  1               
------------------------------------------------------------------------
CV = 11.07 %

------------------------------------------------------------------------
Teste de normalidade dos residuos (Shapiro-Wilk)
valor-p:  0.8117588 
De acordo com o teste de Shapiro-Wilk a 5% de significancia, os residuos podem ser considerados normais.
------------------------------------------------------------------------



Interacao significativa: desdobrando a interacao
------------------------------------------------------------------------

Desdobrando  Inoculante  dentro de cada nivel de  Dias 
------------------------------------------------------------------------
------------------------------------------------------------------------
Quadro da analise de variancia
------------------------------------------------------------------------
------------------------------------------------------------------------



 Inoculante  dentro do nivel  1  de  Dias 

De acordo com o teste F, as medias desse fator sao estatisticamente iguais.
------------------------------------------------------------------------
------------------------------------------------------------------------


 Inoculante  dentro do nivel  2  de  Dias 
------------------------------------------------------------------------
Teste de Tukey
------------------------------------------------------------------------
Grupos Tratamentos Medias
a    1   5.907296 
 b   2   4.862305 
 b   3   4.351375 
------------------------------------------------------------------------


 Inoculante  dentro do nivel  3  de  Dias 

De acordo com o teste F, as medias desse fator sao estatisticamente iguais.
------------------------------------------------------------------------
------------------------------------------------------------------------


 Inoculante  dentro do nivel  4  de  Dias 

De acordo com o teste F, as medias desse fator sao estatisticamente iguais.
------------------------------------------------------------------------
------------------------------------------------------------------------


 Inoculante  dentro do nivel  5  de  Dias 

De acordo com o teste F, as medias desse fator sao estatisticamente iguais.
------------------------------------------------------------------------
------------------------------------------------------------------------


 Inoculante  dentro do nivel  6  de  Dias 

De acordo com o teste F, as medias desse fator sao estatisticamente iguais.
------------------------------------------------------------------------
------------------------------------------------------------------------



Desdobrando  Dias  dentro de cada nivel de  Inoculante 
------------------------------------------------------------------------
------------------------------------------------------------------------
Quadro da analise de variancia
------------------------------------------------------------------------
------------------------------------------------------------------------



 Dias  dentro do nivel  1  de  Inoculante 

De acordo com o teste F, as medias desse fator sao estatisticamente iguais.
------------------------------------------------------------------------
------------------------------------------------------------------------


 Dias  dentro do nivel  2  de  Inoculante 
------------------------------------------------------------------------
Teste de Tukey
------------------------------------------------------------------------
Grupos Tratamentos Medias
a    1   6.099995 
a    4   6.079671 
a    3   5.440338 
a    6   5.211431 
a    2   4.862305 
a    5   4.840571 
------------------------------------------------------------------------


 Dias  dentro do nivel  3  de  Inoculante 
------------------------------------------------------------------------
Teste de Tukey
------------------------------------------------------------------------
Grupos Tratamentos Medias
a    4   6.164046 
a    3   6.061047 
a    1   5.772523 
a    5   5.688424 
ab   6   5.512526 
 b   2   4.351375 
------------------------------------------------------------------------
LAG.mean= data_all %>%group_by(Inoculante, Dia) %>% summarise(Media = mean(l))
`summarise()` has grouped output by 'Inoculante'. You can override using the `.groups` argument.
LAG.mean

t0.5=fat2.dic(data_all$Inoculante,data_all$Dia, data_all$t0.5,quali = c(TRUE, TRUE),mcomp = "tukey",fac.names = c("Inoculante", "Dias"),sigT = 0.05,sigF = 0.05,unfold = NULL)
------------------------------------------------------------------------
Legenda:
FATOR 1:  Inoculante 
FATOR 2:  Dias 
------------------------------------------------------------------------


Quadro da analise de variancia
------------------------------------------------------------------------
                GL     SQ QM     Fc   Pr>Fc
Inoculante       2   2.29  2  0.651 0.52576
Dias             5 356.27  5 40.445 0.00000
Inoculante*Dias 10  59.18  4  3.359 0.00184
Residuo         54  95.13  3               
Total           71 512.87  1               
------------------------------------------------------------------------
CV = 8.51 %

------------------------------------------------------------------------
Teste de normalidade dos residuos (Shapiro-Wilk)
valor-p:  0.08380287 
De acordo com o teste de Shapiro-Wilk a 5% de significancia, os residuos podem ser considerados normais.
------------------------------------------------------------------------



Interacao significativa: desdobrando a interacao
------------------------------------------------------------------------

Desdobrando  Inoculante  dentro de cada nivel de  Dias 
------------------------------------------------------------------------
------------------------------------------------------------------------
Quadro da analise de variancia
------------------------------------------------------------------------
------------------------------------------------------------------------



 Inoculante  dentro do nivel  1  de  Dias 

De acordo com o teste F, as medias desse fator sao estatisticamente iguais.
------------------------------------------------------------------------
------------------------------------------------------------------------


 Inoculante  dentro do nivel  2  de  Dias 
------------------------------------------------------------------------
Teste de Tukey
------------------------------------------------------------------------
Grupos Tratamentos Medias
a    1   19.82492 
 b   2   17.43285 
 b   3   15.3988 
------------------------------------------------------------------------


 Inoculante  dentro do nivel  3  de  Dias 

De acordo com o teste F, as medias desse fator sao estatisticamente iguais.
------------------------------------------------------------------------
------------------------------------------------------------------------


 Inoculante  dentro do nivel  4  de  Dias 

De acordo com o teste F, as medias desse fator sao estatisticamente iguais.
------------------------------------------------------------------------
------------------------------------------------------------------------


 Inoculante  dentro do nivel  5  de  Dias 

De acordo com o teste F, as medias desse fator sao estatisticamente iguais.
------------------------------------------------------------------------
------------------------------------------------------------------------


 Inoculante  dentro do nivel  6  de  Dias 

De acordo com o teste F, as medias desse fator sao estatisticamente iguais.
------------------------------------------------------------------------
------------------------------------------------------------------------



Desdobrando  Dias  dentro de cada nivel de  Inoculante 
------------------------------------------------------------------------
------------------------------------------------------------------------
Quadro da analise de variancia
------------------------------------------------------------------------
------------------------------------------------------------------------



 Dias  dentro do nivel  1  de  Inoculante 
------------------------------------------------------------------------
Teste de Tukey
------------------------------------------------------------------------
Grupos Tratamentos Medias
a    2   19.82492 
a    1   18.6488 
 b   6   14.80994 
 b   3   14.46717 
 b   4   13.82384 
 b   5   13.46908 
------------------------------------------------------------------------


 Dias  dentro do nivel  2  de  Inoculante 
------------------------------------------------------------------------
Teste de Tukey
------------------------------------------------------------------------
Grupos Tratamentos Medias
a    1   19.99873 
a    2   17.43285 
 b   3   14.22521 
 b   5   14.19476 
 b   4   14.00767 
 b   6   13.1631 
------------------------------------------------------------------------


 Dias  dentro do nivel  3  de  Inoculante 
------------------------------------------------------------------------
Teste de Tukey
------------------------------------------------------------------------
Grupos Tratamentos Medias
a    1   20.34552 
 b   5   15.5183 
 b   2   15.3988 
 b   4   13.99989 
 b   3   13.67225 
 b   6   13.65139 
------------------------------------------------------------------------
K=fat2.dic(data_all$Inoculante,data_all$Dia, data_all$k1,quali = c(TRUE, TRUE),mcomp = "tukey",fac.names = c("Inoculante", "Dias"),sigT = 0.05,sigF = 0.05,unfold = NULL)
------------------------------------------------------------------------
Legenda:
FATOR 1:  Inoculante 
FATOR 2:  Dias 
------------------------------------------------------------------------


Quadro da analise de variancia
------------------------------------------------------------------------
                GL     SQ QM     Fc    Pr>Fc
Inoculante       2  10.23  4  3.444 0.039095
Dias             5 531.07  3 71.531 0.000000
Inoculante*Dias 10  57.73  5  3.888 0.000520
Residuo         54  80.18  2                
Total           71 679.21  1                
------------------------------------------------------------------------
CV = 8.54 %

------------------------------------------------------------------------
Teste de normalidade dos residuos (Shapiro-Wilk)
valor-p:  0.5788561 
De acordo com o teste de Shapiro-Wilk a 5% de significancia, os residuos podem ser considerados normais.
------------------------------------------------------------------------



Interacao significativa: desdobrando a interacao
------------------------------------------------------------------------

Desdobrando  Inoculante  dentro de cada nivel de  Dias 
------------------------------------------------------------------------
------------------------------------------------------------------------
Quadro da analise de variancia
------------------------------------------------------------------------
------------------------------------------------------------------------



 Inoculante  dentro do nivel  1  de  Dias 

De acordo com o teste F, as medias desse fator sao estatisticamente iguais.
------------------------------------------------------------------------
------------------------------------------------------------------------


 Inoculante  dentro do nivel  2  de  Dias 
------------------------------------------------------------------------
Teste de Tukey
------------------------------------------------------------------------
Grupos Tratamentos Medias
a    3   12.39519 
ab   2   11.16172 
 b   1   9.826557 
------------------------------------------------------------------------


 Inoculante  dentro do nivel  3  de  Dias 
------------------------------------------------------------------------
Teste de Tukey
------------------------------------------------------------------------
Grupos Tratamentos Medias
a    3   17.97526 
 b   2   15.6679 
 b   1   15.37956 
------------------------------------------------------------------------


 Inoculante  dentro do nivel  4  de  Dias 

De acordo com o teste F, as medias desse fator sao estatisticamente iguais.
------------------------------------------------------------------------
------------------------------------------------------------------------


 Inoculante  dentro do nivel  5  de  Dias 
------------------------------------------------------------------------
Teste de Tukey
------------------------------------------------------------------------
Grupos Tratamentos Medias
a    1   16.3278 
ab   2   14.90192 
 b   3   14.03791 
------------------------------------------------------------------------


 Inoculante  dentro do nivel  6  de  Dias 
------------------------------------------------------------------------
Teste de Tukey
------------------------------------------------------------------------
Grupos Tratamentos Medias
a    2   17.31037 
a    3   16.81012 
 b   1   14.23329 
------------------------------------------------------------------------



Desdobrando  Dias  dentro de cada nivel de  Inoculante 
------------------------------------------------------------------------
------------------------------------------------------------------------
Quadro da analise de variancia
------------------------------------------------------------------------
------------------------------------------------------------------------



 Dias  dentro do nivel  1  de  Inoculante 
------------------------------------------------------------------------
Teste de Tukey
------------------------------------------------------------------------
Grupos Tratamentos Medias
a    5   16.3278 
a    4   16.2701 
a    3   15.37956 
a    6   14.23329 
 b   1   10.57198 
 b   2   9.826557 
------------------------------------------------------------------------


 Dias  dentro do nivel  2  de  Inoculante 
------------------------------------------------------------------------
Teste de Tukey
------------------------------------------------------------------------
Grupos Tratamentos Medias
a    6   17.31037 
a    4   17.2504 
a    3   15.6679 
a    5   14.90192 
 b   2   11.16172 
 b   1   9.917906 
------------------------------------------------------------------------


 Dias  dentro do nivel  3  de  Inoculante 
------------------------------------------------------------------------
Teste de Tukey
------------------------------------------------------------------------
Grupos Tratamentos Medias
a    3   17.97526 
a    4   17.45489 
a    6   16.81012 
 b   5   14.03791 
 b   2   12.39519 
  c      1   9.38189 
------------------------------------------------------------------------
mu0.5=fat2.dic(data_all$Inoculante,data_all$Dia, data_all$mu0.5,quali = c(TRUE, TRUE),mcomp = "tukey",fac.names = c("Inoculante", "Dias"),sigT = 0.05,sigF = 0.05,unfold = NULL)
------------------------------------------------------------------------
Legenda:
FATOR 1:  Inoculante 
FATOR 2:  Dias 
------------------------------------------------------------------------


Quadro da analise de variancia
------------------------------------------------------------------------
                GL     SQ QM     Fc    Pr>Fc
Inoculante       2   4.91  3  3.444 0.039095
Dias             5 255.15  5 71.531 0.000000
Inoculante*Dias 10  27.73  4  3.888 0.000520
Residuo         54  38.52  2                
Total           71 326.33  1                
------------------------------------------------------------------------
CV = 8.54 %

------------------------------------------------------------------------
Teste de normalidade dos residuos (Shapiro-Wilk)
valor-p:  0.5788561 
De acordo com o teste de Shapiro-Wilk a 5% de significancia, os residuos podem ser considerados normais.
------------------------------------------------------------------------



Interacao significativa: desdobrando a interacao
------------------------------------------------------------------------

Desdobrando  Inoculante  dentro de cada nivel de  Dias 
------------------------------------------------------------------------
------------------------------------------------------------------------
Quadro da analise de variancia
------------------------------------------------------------------------
------------------------------------------------------------------------



 Inoculante  dentro do nivel  1  de  Dias 

De acordo com o teste F, as medias desse fator sao estatisticamente iguais.
------------------------------------------------------------------------
------------------------------------------------------------------------


 Inoculante  dentro do nivel  2  de  Dias 
------------------------------------------------------------------------
Teste de Tukey
------------------------------------------------------------------------
Grupos Tratamentos Medias
a    3   8.591694 
ab   2   7.736717 
 b   1   6.81125 
------------------------------------------------------------------------


 Inoculante  dentro do nivel  3  de  Dias 
------------------------------------------------------------------------
Teste de Tukey
------------------------------------------------------------------------
Grupos Tratamentos Medias
a    3   12.4595 
 b   2   10.86016 
 b   1   10.6603 
------------------------------------------------------------------------


 Inoculante  dentro do nivel  4  de  Dias 

De acordo com o teste F, as medias desse fator sao estatisticamente iguais.
------------------------------------------------------------------------
------------------------------------------------------------------------


 Inoculante  dentro do nivel  5  de  Dias 
------------------------------------------------------------------------
Teste de Tukey
------------------------------------------------------------------------
Grupos Tratamentos Medias
a    1   11.31757 
ab   2   10.32922 
 b   3   9.73034 
------------------------------------------------------------------------


 Inoculante  dentro do nivel  6  de  Dias 
------------------------------------------------------------------------
Teste de Tukey
------------------------------------------------------------------------
Grupos Tratamentos Medias
a    2   11.99863 
a    3   11.65189 
 b   1   9.865762 
------------------------------------------------------------------------



Desdobrando  Dias  dentro de cada nivel de  Inoculante 
------------------------------------------------------------------------
------------------------------------------------------------------------
Quadro da analise de variancia
------------------------------------------------------------------------
------------------------------------------------------------------------



 Dias  dentro do nivel  1  de  Inoculante 
------------------------------------------------------------------------
Teste de Tukey
------------------------------------------------------------------------
Grupos Tratamentos Medias
a    5   11.31757 
a    4   11.27757 
a    3   10.6603 
a    6   9.865762 
 b   1   7.327935 
 b   2   6.81125 
------------------------------------------------------------------------


 Dias  dentro do nivel  2  de  Inoculante 
------------------------------------------------------------------------
Teste de Tukey
------------------------------------------------------------------------
Grupos Tratamentos Medias
a    6   11.99863 
a    4   11.95706 
a    3   10.86016 
a    5   10.32922 
 b   2   7.736717 
 b   1   6.874568 
------------------------------------------------------------------------


 Dias  dentro do nivel  3  de  Inoculante 
------------------------------------------------------------------------
Teste de Tukey
------------------------------------------------------------------------
Grupos Tratamentos Medias
a    3   12.4595 
a    4   12.09881 
a    6   11.65189 
 b   5   9.73034 
 b   2   8.591694 
  c      1   6.503031 
------------------------------------------------------------------------

Exportar dados

LS0tDQp0aXRsZTogIkRhZG9zIGRlIHByb2R1w6fDo28gZGUgZ8OhcyBJbiB2aXRybyAtIERlYm9yYWggVUZQQSINCmF1dGhvcjogIlZhZ25lciBPdmFuaTsgTHVtZW5hIFRha2FoYXNoaTsgU2ltw7NuIFDDqXJlei1NYXJxdWV6Ig0KZGF0ZTogIjAyLzEyLzIwMjQiDQpvdXRwdXQ6DQogIGh0bWxfbm90ZWJvb2s6DQogICAgdG9jOiBUUlVFDQogICAgdG9jX2RlcHRoOiAyDQogICAgdGhlbWU6IHVuaXRlZA0KLS0tDQoNCiMgXyoxIC0gUEFDT1RFUypfDQoNCmBgYHtyfQ0KbGlicmFyeShnZ3Bsb3QyKQ0KbGlicmFyeShxcGNSKQ0KbGlicmFyeShkcGx5cikNCmxpYnJhcnkodGliYmxlKQ0KbGlicmFyeShvcGVueGxzeCkNCmxpYnJhcnkodGlkeXIpDQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCg0KbGlicmFyeShlbW1lYW5zKSNtZWRpYXMgZSB0ZXN0ZSBkZSBtZWRpYSBwYXJhIG1vZGVsbyBtaXN0bw0KbGlicmFyeShtdWx0Y29tcFZpZXcpICN2YXJpYW5jaWENCmxpYnJhcnkobXVsdGNvbXApDQpgYGANCg0KIyBfKjIgLSBEYWRvcypfDQoNCmBgYHtyfQ0KZGFkb3MgPSByZWFkLmNzdigiRDovQXJtYXplbmFtZW50by9EQVRBIFIvRGVib3JhaCBVRlBBL2RhdGEuY3N2IikNClZpZXcoZGFkb3MpDQpzdHIoZGFkb3MpDQpkYWRvcyREaWV0YT1hcy5mYWN0b3IoZGFkb3MkRGlldGEpDQoNCg0KI0ZpbHRybw0KZGF0YW1vZGVscz0gZGFkb3MgJT4lDQogIHNlbGVjdChEaWV0YSwgVDA6VDI0KSAlPiUgICAgICAgICAgDQogIGdyb3VwX2J5KERpZXRhKSAlPiUgICAgICAgICAgICAgICAgDQogIHN1bW1hcmlzZShhY3Jvc3MoZXZlcnl0aGluZygpLCBtZWFuLCBuYS5ybSA9IFRSVUUpKQ0KcHJpbnQoZGF0YW1vZGVscykNCg0KI0ludmVyc8Ojbw0KZGF0YV9sb25nIDwtIGRhdGFtb2RlbHMgJT4lDQogIHBpdm90X2xvbmdlcihjb2xzID0gc3RhcnRzX3dpdGgoIlQiKSwgDQogICAgICAgICAgICAgICBuYW1lc190byA9ICJUaW1lIiwgDQogICAgICAgICAgICAgICB2YWx1ZXNfdG8gPSAiUEciKSAlPiUNCiAgbXV0YXRlKFRpbWUgPSBhcy5udW1lcmljKGdzdWIoIlQiLCAiIiwgVGltZSkpKSAlPiUNCiAgcGl2b3Rfd2lkZXIobmFtZXNfZnJvbSA9IERpZXRhLCB2YWx1ZXNfZnJvbSA9IFBHKQ0KaGVhZChkYXRhX2xvbmcpDQpgYGANCg0KIyBfKjMgLSBTSEFQRSBEQVRBIC0gTE9ORyBGT1JNQVQqXw0KDQpgYGB7cn0NCmRhdGFfbG9uZzEgPC0gZ2F0aGVyKGRhdGFfbG9uZywga2V5ID0gImlkIiwgdmFsdWUgPSAicGciLCAtVGltZSkgI2ludmVydGVuZG8gbm92YW1lbnRlLCBwYXJhIGZvcm1hdG8gbG9uZ28NCmRhdGFfbG9uZzEgPC0gZHJvcF9uYShkYXRhX2xvbmcxKSAjcmVtb8Onw6NvIGRlIE5BDQpkYXRhX2xvbmcxIDwtIGRhdGFfbG9uZzEgJT4lIGZpbHRlcihwZyA+PSAwKSAjdmFsb3JlcyBuZWdhdGl2b3MNCnByaW50KGRhdGFfbG9uZzEpDQpkYXRhX2xvbmdfZmlsdHJvIDwtIHN1YnNldChkYXRhX2xvbmcxLCAhVGltZSAlaW4lIGMoNiwgMTAsIDEyLDE4LDIxKSkgI1JlZHV6aW5kbyBhbGd1bnMgdGVtcG9zIGRlc25lY2Vzc2FyaW9zDQpkYXRhX2xvbmdfZmlsdHJvDQpgYGANCj4gVGhlIGZvcm1hdCBmb3IgdGhpcyBjb2RlIHRvIHdvcmsgaXMgd2lkZSBmb3JtYXQsIHdpdGggZXZlcnkgY29sdW1uIGJlaW5nIGEgc3Vic3RyYXRlLg0KDQojIF8qNCAtIFJhbmtpbmcgZG9zIG1vZGVsb3MqXw0KDQojIyBfKkV4cG9uZW5jaWFsKl8NCg0KYGBge3J9DQpleHAgPC0gbmxzKHBnIH4gKHZmKigxLWV4cCgtaypUaW1lKSkpLA0KICAgICAgICAgIGRhdGEgPSBkYXRhX2xvbmdfZmlsdHJvLA0KICAgICAgICAgIHN0YXJ0ID0gYyh2Zj0gMTAwLCBrID0gMC4wNSksDQogICAgICAgICAgYWxnb3JpdGhtID0gInBvcnQiLA0KICAgICAgICAgICBsb3dlciA9IGMoMSwgMC4wMDEpLCANCiAgICAgICAgICAgdXBwZXIgPSBjKDMwMCwgMC41KSwNCiAgICAgICAgICBjb250cm9sID0gbmxzLmNvbnRyb2wobWF4aXRlciA9IDUwMCwgbWluRmFjdG9yID0gMWUtMTApKQ0KDQpleHBfc3RhdF9jcml0ZXJpYSA8LSBhcy5kYXRhLmZyYW1lKGMoZGV2aWFuY2UoZXhwKSwgQUlDYyhleHApLCBCSUMoZXhwKSwgUnNxLmFkKGV4cCksIFJNU0UoZXhwKSksICByb3cubmFtZXMgPSBjKCJSU1MiLCJBSUMiLCJCSUMiLCJSU1EiLCJSTVNFIiApKQ0KY29sbmFtZXMoZXhwX3N0YXRfY3JpdGVyaWEpIDwtICJFeHBvbmVuY2lhbCINCmBgYA0KDQojIyBfKmV4cGxhZ29uZW5jaWFsKl8NCg0KYGBge3J9DQpleHBsYWcgPC0gbmxzKHBnIH4gKHZmKigxLWV4cCgtayooVGltZS1MQUcpKSkpLA0KICAgICAgICAgIGRhdGEgPSBkYXRhX2xvbmdfZmlsdHJvLA0KICAgICAgICAgIHN0YXJ0ID0gYyh2Zj0gMjAwLCBrID0gMC4wNSwgTEFHID0gMC41KSwNCiAgICAgICAgICBhbGdvcml0aG0gPSAicG9ydCIsDQogICAgICAgICAgIGxvd2VyID0gYygxLCAwLjAwMSwgMC4wMSksIA0KICAgICAgICAgICB1cHBlciA9IGMoMzAwLCAwLjUsIDEpLA0KICAgICAgICAgIGNvbnRyb2wgPSBubHMuY29udHJvbChtYXhpdGVyID0gNTAwLCBtaW5GYWN0b3IgPSAxZS0xMCkNCiAgICAgICAgICApDQoNCmV4cGxhZ19zdGF0X2NyaXRlcmlhIDwtIGFzLmRhdGEuZnJhbWUoYyhkZXZpYW5jZShleHBsYWcpLCBBSUNjKGV4cGxhZyksIEJJQyhleHBsYWcpLCBSc3EuYWQoZXhwbGFnKSwgUk1TRShleHBsYWcpKSwgIHJvdy5uYW1lcyA9IGMoIlJTUyIsIkFJQyIsIkJJQyIsIlJTUSIsIlJNU0UiICkpDQpjb2xuYW1lcyhleHBsYWdfc3RhdF9jcml0ZXJpYSkgPC0gImV4cGxhZ29uZW5jaWFsIg0KYGBgDQoNCiMjIF8qR29tcGVydHoqXw0KDQpgYGB7cn0NCmdvbSA8LSBubHMocGcgfiAodmYqZXhwKC1leHAoMS1rKihUaW1lLWwpKSkpLA0KICAgICAgICAgIGRhdGEgPSBkYXRhX2xvbmdfZmlsdHJvLA0KICAgICAgICAgIGFsZ29yaXRobSA9ICJwb3J0IiwNCiAgICAgICAgICBzdGFydCA9IGModmY9IDIwMCwgayA9IDAuMDUsIGwgPSAwLjEpLA0KICAgICAgICAgIGxvd2VyID0gYygwLDAsMCkpDQoNCmdvbV9zdGF0X2NyaXRlcmlhIDwtIGFzLmRhdGEuZnJhbWUoYyhkZXZpYW5jZShnb20pLCBBSUNjKGdvbSksIEJJQyhnb20pLCBSc3EuYWQoZ29tKSwgUk1TRShnb20pKSwgIHJvdy5uYW1lcyA9IGMoIlJTUyIsIkFJQyIsIkJJQyIsIlJTUSIsIlJNU0UiICkpDQpjb2xuYW1lcyhnb21fc3RhdF9jcml0ZXJpYSkgPC0gIkdvbXBlcnR6Ig0KYGBgDQoNCiMjIF8qRnJhbmNlKl8NCg0KYGBge3J9DQpmcmEgPC0gbmxzKHBnIH4gdmYqKDEtZXhwKC1rKihUaW1lLWwpLWQqKHNxcnQoVGltZSktc3FydChsKSkpKSwNCiAgICAgICAgICBkYXRhID0gZGF0YV9sb25nX2ZpbHRybywNCiAgICAgICAgICBhbGdvcml0aG0gPSAicG9ydCIsDQogICAgICAgICAgc3RhcnQgPSBjKHZmPSAxMDAsIGsgPSAwLjAxLCBsID0gMCwgZCA9IDAuMDEpLA0KICAgICAgICAgIGxvd2VyID0gYygwLCAwLCAwLCAwKSwNCiAgICAgICAgICB1cHBlciA9IGMoMjAwLCAxLCAxLCAxKQ0KICAgICAgICAgICkNCg0KZnJhX3N0YXRfY3JpdGVyaWEgPC0gYXMuZGF0YS5mcmFtZShjKGRldmlhbmNlKGZyYSksIEFJQ2MoZnJhKSwgQklDKGZyYSksIFJzcS5hZChmcmEpLCBSTVNFKGZyYSkpLCAgcm93Lm5hbWVzID0gYygiUlNTIiwiQUlDIiwiQklDIiwiUlNRIiwiUk1TRSIgKSkNCmNvbG5hbWVzKGZyYV9zdGF0X2NyaXRlcmlhKSA8LSAiRnJhbmNlIg0KYGBgDQoNCiMjIF8qU2Nob2ZpZWxkIFUqXw0KDQpgYGB7cn0NCnNjaHUgPC0gbmxzKHBnIH4gdmYvKDErZXhwKDItNCprKihUaW1lLWwpKSksDQogICAgICAgICAgZGF0YSA9IGRhdGFfbG9uZ19maWx0cm8sDQogICAgICAgICAgYWxnb3JpdGhtID0gInBvcnQiLA0KICAgICAgICAgIHN0YXJ0ID0gYyh2Zj0gMTAwLCBrID0gMC4wNSwgbCA9IDAuMikpDQoNCnNjaHVfc3RhdF9jcml0ZXJpYSA8LSBhcy5kYXRhLmZyYW1lKGMoZGV2aWFuY2Uoc2NodSksIEFJQ2Moc2NodSksIEJJQyhzY2h1KSwgUnNxLmFkKHNjaHUpLCBSTVNFKHNjaHUpKSwgIHJvdy5uYW1lcyA9IGMoIlJTUyIsIkFJQyIsIkJJQyIsIlJTUSIsIlJNU0UiICkpDQpjb2xuYW1lcyhzY2h1X3N0YXRfY3JpdGVyaWEpIDwtICJTY2hvZmllbGQgVSINCmBgYA0KDQojIyBfKldhbmcqXw0KDQpgYGB7cn0NCndhbiA8LSBubHMocGcgfiB2ZiooKDEtZXhwKC1rKlRpbWUpKS8oMStleHAobG9nKDEvZCktaypUaW1lKSkpLA0KICAgICAgICAgIGRhdGEgPSBkYXRhX2xvbmdfZmlsdHJvLA0KICAgICAgICAgIGFsZ29yaXRobSA9ICJwb3J0IiwNCiAgICAgICAgICBzdGFydCA9IGModmY9MjAwLCBrID0gMC4wMSwgZCA9IDEpLA0KICAgICAgICAgIGxvd2VyID0gYygwLDAsMC4xKSwNCiAgICAgICAgICB1cHBlciA9IGMoMzAwLDAuNSwxMCkNCiAgICAgICAgICApDQoNCndhbl9zdGF0X2NyaXRlcmlhIDwtIGFzLmRhdGEuZnJhbWUoYyhkZXZpYW5jZSh3YW4pLCBBSUNjKHdhbiksIEJJQyh3YW4pLCBSc3EuYWQod2FuKSwgUk1TRSh3YW4pKSwgIHJvdy5uYW1lcyA9IGMoIlJTUyIsIkFJQyIsIkJJQyIsIlJTUSIsIlJNU0UiICkpDQpjb2xuYW1lcyh3YW5fc3RhdF9jcml0ZXJpYSkgPC0gIldhbmciDQpgYGANCg0KIyMgXypXYW5nIEwqXw0KDQpgYGB7cn0NCndhbmwgPC0gbmxzKHBnIH4gdmYqKDEtZXhwKC1rKihUaW1lLWwpKSkvKDErZXhwKGxvZygxL2QpLWsqKFRpbWUtbCkpKSwNCiAgICAgICAgICBkYXRhID0gZGF0YV9sb25nX2ZpbHRybywNCiAgICAgICAgICBhbGdvcml0aG0gPSAicG9ydCIsDQogICAgICAgICAgc3RhcnQgPSBjKHZmPTIwMCwgayA9IDAuMDUsIGQgPSAwLjUsIGwgPSAwLjUpLA0KICAgICAgICAgIGxvd2VyID0gYygwLCAwLCAwLCAwKSwNCiAgICAgICAgICB1cHBlciA9IGMoMjAwLCAxLCAxLCAxKQ0KICAgICAgICAgICkNCg0Kd2FubF9zdGF0X2NyaXRlcmlhIDwtIGFzLmRhdGEuZnJhbWUoYyhkZXZpYW5jZSh3YW5sKSwgQUlDYyh3YW5sKSwgQklDKHdhbmwpLCBSc3EuYWQod2FubCksIFJNU0Uod2FubCkpLCAgcm93Lm5hbWVzID0gYygiUlNTIiwiQUlDIiwiQklDIiwiUlNRIiwiUk1TRSIgKSkNCmNvbG5hbWVzKHdhbmxfc3RhdF9jcml0ZXJpYSkgPC0gIldhbmcgTCINCmBgYA0KDQojIyBfKkFicmV1Kl8NCg0KYGBge3J9DQphYnIgPC0gbmxzKHBnIH4gdmYxKigxLWV4cCgtazEqVGltZSkpK3ZmMipleHAoLWV4cCgxK2syKmV4cCgxKSooTC1UaW1lKSkpLA0KICAgICAgICAgIGRhdGEgPSBkYXRhX2xvbmdfZmlsdHJvLA0KICAgICAgICAgIGFsZ29yaXRobSA9ICJwb3J0IiwNCiAgICAgICAgICBzdGFydCA9IGModmYxID0gMTU1LCBrMSA9IDAuMDA1LCBMID0gMC41LCB2ZjIgPSA1MCwgazIgPSAwLjA1KSwNCiAgICAgICAgICBsb3dlciA9IGMoMCwwLDAsMCwwKSwNCiAgICAgICAgICB1cHBlciA9IGMoMzAwLDAuNSwxLDMwMCwwLjUpDQogICAgICAgICAgKQ0KDQphYnJfc3RhdF9jcml0ZXJpYSA8LSBhcy5kYXRhLmZyYW1lKGMoZGV2aWFuY2UoYWJyKSwgQUlDYyhhYnIpLCBCSUMoYWJyKSwgUnNxLmFkKGFiciksIFJNU0UoYWJyKSksICByb3cubmFtZXMgPSBjKCJSU1MiLCJBSUMiLCJCSUMiLCJSU1EiLCJSTVNFIiApKQ0KY29sbmFtZXMoYWJyX3N0YXRfY3JpdGVyaWEpIDwtICJBYnJldSINCmBgYA0KDQojIF8qNSAtIFJlc3VsdGFkbyBDcml0ZXJpb3MgRXN0YXRpc3RpY29zKl8NCg0KYGBge3IgZWNobz1GQUxTRX0NCnN0YXRfY3JpdGVyaWFfcmVzdWx0cyA8LSBjYmluZChhYnJfc3RhdF9jcml0ZXJpYSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBleHBfc3RhdF9jcml0ZXJpYSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBleHBsYWdfc3RhdF9jcml0ZXJpYSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBmcmFfc3RhdF9jcml0ZXJpYSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBnb21fc3RhdF9jcml0ZXJpYSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBzY2h1X3N0YXRfY3JpdGVyaWEsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgd2FuX3N0YXRfY3JpdGVyaWEsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgd2FubF9zdGF0X2NyaXRlcmlhKQ0KdChzdGF0X2NyaXRlcmlhX3Jlc3VsdHMpICN0IGZyb20gdHJhbnNwb3NlDQoNCnByZWRpdG9zIDwtIGNiaW5kKGRhdGFfbG9uZ19maWx0cm8sDQogICAgICBhcy5kYXRhLmZyYW1lKHByZWRpY3QoZXhwKSksDQogICAgICBhcy5kYXRhLmZyYW1lKHByZWRpY3QoZXhwbGFnKSksDQogICAgICBhcy5kYXRhLmZyYW1lKHByZWRpY3QoZ29tKSksDQogICAgICBhcy5kYXRhLmZyYW1lKHByZWRpY3QoZnJhKSksDQogICAgICBhcy5kYXRhLmZyYW1lKHByZWRpY3Qoc2NodSkpLA0KICAgICAgYXMuZGF0YS5mcmFtZShwcmVkaWN0KHdhbikpLA0KICAgICAgYXMuZGF0YS5mcmFtZShwcmVkaWN0KHdhbmwpKSwNCiAgICAgIGFzLmRhdGEuZnJhbWUocHJlZGljdChhYnIpKSkNCmNvbG5hbWVzKHByZWRpdG9zKSA8LSBjKCJ0IiwiYXNzYXkiLCJvYnMiLCAiZXhwIiwgImV4cGxhZyIsICJnb20iLCAiZnJhIiwgInNjaHUiLCAid2FuIiwgIndhbmwiLCAiYWJyIikNCnByZWRpdG9zDQoNCnByZWRpdG9zICU+JSBwaXZvdF9sb25nZXIoYygzOjExKSwgbmFtZXNfdG8gPSAibW9kZWxvIix2YWx1ZXNfdG8gPSAicGciKSAtPiBsb25nDQpwcmludChsb25nKQ0KbG9uZyRtb2RlbG8gPC0gYXMuZmFjdG9yKGxvbmckbW9kZWxvKQ0KbG9uZyRhc3NheSA8LSBhcy5mYWN0b3IobG9uZyRhc3NheSkNCnN0cihsb25nKQ0KDQp3cml0ZS54bHN4KGxvbmcsIGZpbGUgPSAiRDovQXJtYXplbmFtZW50by9EQVRBIFIvRGVib3JhaCBVRlBBL2xvbmcueGxzeCIsIHNoZWV0TmFtZSA9ICJEYWRvcyIsIHJvd25hbWVzID0gRkFMU0UpDQpgYGANCg0KIyBfKjYgLSBQbG90Kl8NCg0KYGBge3IgZWNobz1GQUxTRX0NCmdncGxvdChsb25nLCBhZXModCwgcGcsIGxpbmV0eXBlID0gbW9kZWxvLCBjb2xvdXIgPSBtb2RlbG8sIGdyb3VwID0gbW9kZWxvKSkrDQogIGdlb21fcG9pbnQoKSsNCiAgZ2VvbV9saW5lKCkrDQogIGZhY2V0X3dyYXAofiBtb2RlbG8sIHNjYWxlcyA9ICJmcmVlIikgKyAgDQogIHRoZW1lX21pbmltYWwoKSArDQogIGxhYnMoeCA9ICJUZW1wbyAoaCkiLCB5ID0gIlBHIiwgdGl0bGUgPSAiR3LDoWZpY28gZG9zIE1vZGVsb3MiKSArDQogIHRoZW1lKGxlZ2VuZC5wb3NpdGlvbiA9ICJib3R0b20iKSANCmBgYA0KDQojIF8qNyAtIEF2YWxpYcOnw6NvIGRvcyBNb2RlbG9zIC0gUmFua2luZypfDQoNCg0KYGBge3J9DQpjcml0ZXJpYSA8LSBhcy5kYXRhLmZyYW1lKHQoc3RhdF9jcml0ZXJpYV9yZXN1bHRzKSkNCmNyaXRlcmlhIDwtIHJvd25hbWVzX3RvX2NvbHVtbihjcml0ZXJpYSwgImNyaXRlcmlhIikNCmNyaXRlcmlhDQoNCndyaXRlLnhsc3goY3JpdGVyaWEsIGZpbGUgPSAiRDovQXJtYXplbmFtZW50by9EQVRBIFIvRGVib3JhaCBVRlBBL2NyaXRlcmlhLnhsc3giLCBzaGVldE5hbWUgPSAiRGFkb3MiLCByb3duYW1lcyA9IEZBTFNFKQ0KDQpjcml0ZXJpYSAlPiUNCiAgIG11dGF0ZShhY3Jvc3MoYyhSU1M6Uk1TRSksIHJhbmspKSAtPiByYW5rZWQNCnJhbmtlZCRUT1QgPC0gKHJhbmtlZCRSU1MrcmFua2VkJEFJQytyYW5rZWQkQklDK3JhbmtlZCRSTVNFLXJhbmtlZCRSU1EpDQpyYW5rZWQNCg0Kd3JpdGUueGxzeChyYW5rZWQsIGZpbGUgPSAiRDovQXJtYXplbmFtZW50by9EQVRBIFIvRGVib3JhaCBVRlBBL3JhbmtlZC54bHN4Iiwgc2hlZXROYW1lID0gIkRhZG9zIiwgcm93bmFtZXMgPSBGQUxTRSkNCmBgYA0KDQo+R29tcGVydHogZm9pIG8gbWVsaG9yIG1vZGVsby4NCg0KIyBfKjggLSBBcGxpY2FuZG8gbyBtb2RlbG8gR29tcGVydHogcGFyYSBhbsOhbGlzZSBkbyBwZXJmaWwgZGUgZmVybWVudGHDp8OjbypfDQoNCiRcZGlzcGxheXN0eWxlIFY9IHZmKmV4cF4oLWV4cF57MS1rKHQtbCl9KSQNCg0KYGBge3J9DQpkYXRhX2xvbmcgPSBkcm9wX25hKGRhdGFfbG9uZykNCnByaW50KGRhdGFfbG9uZykNCg0KbW9kX2V4cF9wZyA8LSBsYXBwbHkobmFtZXMoZGF0YV9sb25nKVtjKDI6NzMpXSwNCiAgICAgICAgICAgICAgICAgICBmdW5jdGlvbihzKXsNCiAgICAgICAgICAgICAgICAgICAgIG5scyhzdWJzdGl0dXRlKHAgfiAodmYqZXhwKC1leHAoMS1rKihUaW1lLWwpKSkpLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbGlzdChwID0gYXMubmFtZShzKSkpLA0KICAgICAgICAgICAgICAgICAgICAgICAgIGRhdGEgPSBkYXRhX2xvbmcsDQogICAgICAgICAgICAgICAgICAgICAgICAgYWxnb3JpdGhtID0gInBvcnQiLA0KICAgICAgICAgIHN0YXJ0ID0gYyh2Zj0gMjAwLCBrID0gMC4wNSwgbCA9IDAuMSksDQogICAgICAgICAgbG93ZXIgPSBjKDAsMCwwKSkNCiAgICAgICAgICAgICAgICAgICAgIH0NCiAgICAgICAgICAgICAgICAgICApDQoNCnJlc3VsdHNfcGc8LWFzLmRhdGEuZnJhbWUobGFwcGx5KG1vZF9leHBfcGcsY29lZikpDQpuYW1lcyhyZXN1bHRzX3BnKSA8LSBuYW1lcyhkYXRhX2xvbmdbMjo3M10pDQpyZXN1bHRzX3BnIDwtIGFzLmRhdGEuZnJhbWUodChyZXN1bHRzX3BnKSkNCnJlc3VsdHNfcGcgPC0gcm93bmFtZXNfdG9fY29sdW1uKHJlc3VsdHNfcGcsICJzdWJzdHJhdGUiKQ0KVmlldyhyZXN1bHRzX3BnKQ0KYGBgDQoNCiMgXypDYWxjdWxhciB0MC41Kl8NCg0KYGBge3J9DQpyZXN1bHRzX3BnID0gcmVzdWx0c19wZyAlPiUgbXV0YXRlKHQwLjUgPSBsICsgKDEgLSBsb2cobG9nKDIpKSkgLyBrKQ0KcmVzdWx0c19wZw0KYGBgDQoNCiMgXypDYWxjdWxhciBvIG11MC41Kl8NCg0KYGBge3J9DQpyZXN1bHRzX3BnID0gcmVzdWx0c19wZyAlPiUgbXV0YXRlKG11MC41ID0gbG9nKDIpICogaykNCnJlc3VsdHNfcGckbXUwLjU9cmVzdWx0c19wZyRtdTAuNSoxMDANCg0KI2s9IGZyYWN0aW9uYWwgcmF0ZSBvZiBnYXMgcHJvZHVjdGlvbg0KcmVzdWx0c19wZyRrMT1yZXN1bHRzX3BnJGsqMTAwICNQT1JDRU5UQUdFTQ0KDQpwcmludChyZXN1bHRzX3BnKQ0KYGBgDQoNCiMgXypKdW50YXIgZGFkb3MqXw0KDQpgYGB7cn0NCiNGaWx0cm8NCmRhZG9zLnRvdGFsPSBkYWRvcyAlPiUNCiAgZ3JvdXBfYnkoRGlldGEsSW5vY3VsYW50ZSxEaWEpICU+JSAgICAgICAgICAgICAgICANCiAgc3VtbWFyaXNlKGFjcm9zcyhldmVyeXRoaW5nKCksIG1lYW4sIG5hLnJtID0gVFJVRSkpDQpwcmludChkYWRvcy50b3RhbCkNCg0KDQpkYXRhX2NvbWJpbmFkbyA9IGNiaW5kKGRhZG9zLnRvdGFsLCByZXN1bHRzX3BnKQ0KVmlldyhkYXRhX2NvbWJpbmFkbykNCmBgYA0KDQojIF8qOSAtIEFuw6FsaXNlIGVzdGF0aXN0aWNhKl8NCg0KIyMgXypBbm92YSpfIA0KDQpgYGB7cn0NCmRhdGFfYWxsPWRhdGFfY29tYmluYWRvWywtMjBdDQpzdHIoZGF0YV9hbGwpDQpkYXRhX2FsbCRJbm9jdWxhbnRlIDwtIGFzLmZhY3RvcihkYXRhX2FsbCRJbm9jdWxhbnRlKQ0KZGF0YV9hbGwkRGlhIDwtIGFzLmZhY3RvcihkYXRhX2FsbCREaWEpDQoNCiMgRmlsdHJhciBub21lcyBkYXMgY29sdW5hcyBudW3DqXJpY2FzIA0KdmFyaWF2ZWlzX2RlcGVuZGVudGVzID0gbmFtZXMoZGF0YV9hbGwpW3NhcHBseShkYXRhX2FsbCwgaXMubnVtZXJpYykgJiAhKG5hbWVzKGRhdGFfYWxsKSAlaW4lIG5hbWVzKGRhdGFfYWxsKVsxOjE1XSldDQp2YXJpYXZlaXNfZGVwZW5kZW50ZXMNCg0KI0Z1bsOnw6NvIHBhcmEgQU5PVkENCmFub3ZhX21vZGVsX2FsbCA8LSBmdW5jdGlvbihkYXRhLCB2YXJpYXZlaXNfZGVwZW5kZW50ZXMpIHsNCiAgcmVzdWx0YWRvc19hbm92YSA8LSBsYXBwbHkodmFyaWF2ZWlzX2RlcGVuZGVudGVzLCBmdW5jdGlvbih2YXIpIHsNCiAgICBtb2QgPC0gYW92KGFzLmZvcm11bGEocGFzdGUodmFyLCAifiBJbm9jdWxhbnRlICsgRGlhICsgSW5vY3VsYW50ZSpEaWEiKSksIGRhdGEgPSBkYXRhKQ0KICAgIGFub3ZhX3JlcyA8LSBzdW1tYXJ5KG1vZCkNCiAgICBsaXN0KA0KICAgICAgdmFyaWF2ZWwgPSB2YXIsDQogICAgICBtb2RlbCA9IG1vZCwNCiAgICAgIGFub3ZhID0gYW5vdmFfcmVzDQogICAgKQ0KICB9KQ0KICByZXR1cm4ocmVzdWx0YWRvc19hbm92YSkNCn0NCnJlc3VsdGFkb3NfYW5vdmEgPC0gYW5vdmFfbW9kZWxfYWxsKGRhdGFfYWxsLCB2YXJpYXZlaXNfZGVwZW5kZW50ZXMpDQpyZXN1bHRhZG9zX2Fub3ZhDQpgYGANCg0KIyMgXypSZWdyZXNzw7VlcyBubyBGYXRvciBEaWEqXyANCg0KYGBge3J9DQpyZWdyZXNzYW9fZGlhX2FsbCA8LSBmdW5jdGlvbihkYXRhLCB2YXJpYXZlaXNfZGVwZW5kZW50ZXMpIHsNCiAgZGF0YSREaWFfbnVtIDwtIGFzLm51bWVyaWMoYXMuY2hhcmFjdGVyKGRhdGEkRGlhKSkNCiAgcmVzdWx0YWRvc19yZWdyZXNzYW8gPC0gbGFwcGx5KHZhcmlhdmVpc19kZXBlbmRlbnRlcywgZnVuY3Rpb24odmFyKSB7DQogICAgbW9kX2xpbmVhciA8LSBsbShhcy5mb3JtdWxhKHBhc3RlKHZhciwgIn4gRGlhX251bSIpKSwgZGF0YSA9IGRhdGEpDQogICAgbW9kX3F1YWQgPC0gbG0oYXMuZm9ybXVsYShwYXN0ZSh2YXIsICJ+IHBvbHkoRGlhX251bSwgMikiKSksIGRhdGEgPSBkYXRhKQ0KICAgIG1vZF9jdWJpYyA8LSBsbShhcy5mb3JtdWxhKHBhc3RlKHZhciwgIn4gcG9seShEaWFfbnVtLCAzKSIpKSwgZGF0YSA9IGRhdGEpDQogICAgbGlzdCgNCiAgICAgIHZhcmlhdmVsID0gdmFyLA0KICAgICAgcmVncmVzc2FvID0gbGlzdCgNCiAgICAgICAgbGluZWFyID0gc3VtbWFyeShtb2RfbGluZWFyKSwNCiAgICAgICAgcXVhZHJhdGljYSA9IHN1bW1hcnkobW9kX3F1YWQpLA0KICAgICAgICBjdWJpY2EgPSBzdW1tYXJ5KG1vZF9jdWJpYykNCiAgICAgICkNCiAgICApDQogIH0pDQogIHJldHVybihyZXN1bHRhZG9zX3JlZ3Jlc3NhbykNCn0NCg0KcmVzdWx0YWRvc19yZWdyZXNzYW8gPSByZWdyZXNzYW9fZGlhX2FsbChkYXRhX2FsbCwgdmFyaWF2ZWlzX2RlcGVuZGVudGVzKQ0KcmVzdWx0YWRvc19yZWdyZXNzYW8NCmBgYA0KDQojIyBfKlBsb3QgUEcqXyANCg0KYGBge3J9DQpzdHIoZGF0YV9hbGwpDQoNCm0xPWxtKE5ldEdQMjRofmFzLm51bWVyaWMoRGlhKSxkYXRhPWRhdGFfYWxsKQ0Kc3VtbWFyeShtMSkNCg0KcGxvdDEgPSBnZ3Bsb3QoZGF0YV9hbGwsIGFlcyh4ID0gYXMubnVtZXJpYyhEaWEpLCB5ID0gTmV0R1AyNGgsIGdyb3VwID0gSW5vY3VsYW50ZSwgY29sb3IgPSBhcy5mYWN0b3IoSW5vY3VsYW50ZSkpKSArDQogIGdlb21fc21vb3RoKG1ldGhvZCA9ICdsbScsIGZvcm11bGEgPSB5IH4geCwgc2UgPSBUUlVFLCBzaXplID0gMC4yNSwgYWVzKGxpbmV0eXBlID0gYXMuZmFjdG9yKElub2N1bGFudGUpKSkgKyANCiAgZ2VvbV9wb2ludChzaXplID0gMSkgKw0KICBzY2FsZV94X2NvbnRpbnVvdXMobmFtZSA9IGV4cHJlc3Npb24ocGFzdGUoIlRlbXBvIGRlIGZlcm1lbnRhw6fDo28gKERpYXMpIikpLCANCiAgICAgICAgICAgICAgICAgICAgIGJyZWFrcyA9IDE6NixsYWJlbHMgPSBjKCIxNSBkaWFzIiwgIjMwIGRpYXMiLCAiNDUgZGlhcyIsICI2MCBkaWFzIiwgIjc1IGRpYXMiLCAiOTAgZGlhcyIpKSsNCiAgc2NhbGVfeV9jb250aW51b3VzKG5hbWUgPSBleHByZXNzaW9uKHBhc3RlKCJQcm9kdcOnw6NvIGRlIGfDoXMgKG1MICIsIGdeLTEsICJNUykiKSksYnJlYWtzID0gc2VxKDQwLCAxNDAsIDIwKSxsaW1pdHMgPSBjKDQwLCAxNDApKSsNCiAgc2NhbGVfY29sb3JfbWFudWFsKG5hbWUgPSAiSW5vY3VsYW50ZSIsdmFsdWVzID0gYygiYmx1ZTQiLCAicmVkNCIsICJncmVlbjQiKSxsYWJlbHMgPSBjKCJUQyIsICJMQiIsICJMSExCIikpKw0KICBzY2FsZV9saW5ldHlwZV9tYW51YWwobmFtZSA9ICJJbm9jdWxhbnRlIix2YWx1ZXMgPSBjKDEsIDEsIDEpLGxhYmVscyA9IGMoIlRDIiwgIkxCIiwgIkxITEIiKSkNCnBsb3QxDQpwbG90Mj1wbG90MSsgdGhlbWUoYXhpcy5saW5lID0gZWxlbWVudF9saW5lKGNvbG91ciA9ICJibGFjayIsIHNpemUgPSAwLjUsIGxpbmV0eXBlID0gInNvbGlkIiksDQogIHBhbmVsLmJhY2tncm91bmQgPSBlbGVtZW50X3JlY3QoZmlsbCA9ICJ0cmFuc3BhcmVudCIpLA0KICBheGlzLnRpY2tzID0gZWxlbWVudF9saW5lKGNvbG91ciA9ICJibGFjayIsIHNpemUgPSAwLjI1KSwNCiAgYXhpcy50aXRsZS54ID0gZWxlbWVudF90ZXh0KHNpemUgPSAxNCwgY29sb3IgPSAiYmxhY2siKSwNCiAgYXhpcy50aXRsZS55ID0gZWxlbWVudF90ZXh0KHNpemUgPSAxNCwgY29sb3IgPSAiYmxhY2siKSwNCiAgYXhpcy50ZXh0LnggPSBlbGVtZW50X3RleHQoc2l6ZSA9IDEyLCAgYW5nbGUgPSAyNSwgaGp1c3QgPSAxLCBjb2xvciA9ICJibGFjayIpLA0KICBheGlzLnRleHQueSA9IGVsZW1lbnRfdGV4dChzaXplID0gMTIsIGNvbG9yID0gImJsYWNrIiksDQogIGxlZ2VuZC5iYWNrZ3JvdW5kID0gZWxlbWVudF9yZWN0KGZpbGwgPSAidHJhbnNwYXJlbnQiLCBzaXplPTAuNSwgbGluZXR5cGU9InNvbGlkIixjb2xvdXIgPSJibGFjayIpLA0KICBsZWdlbmQucG9zaXRpb24gPSBjKDAuMTUsIDAuODUpLGxlZ2VuZC5rZXkuc2l6ZSA9IHVuaXQoMC40MiwgJ2NtJyksDQogIGxlZ2VuZC50ZXh0ID0gZWxlbWVudF90ZXh0KHNpemUgPSAxMyksDQogIGxlZ2VuZC50aXRsZSA9IGVsZW1lbnRfdGV4dChzaXplID0gMTQpKSsNCmFubm90YXRlKGdlb209InRleHQiLCB5PTcwLCB4PTMuNSxsYWJlbD1leHByZXNzaW9uKHBhc3RlKCJ5ID0gMi4xNXggKyA4OS43ICAiLCBSXjIsICIgPSAwLjQxIikpLHNpemU9NSxjb2xvcj0iYmxhY2siKSsNCmFubm90YXRlKCJ0ZXh0IixzaXplPTUsIHg9NSwgeT0xNDAsbGFiZWw9IlAgdmFsdWVzIikrDQphbm5vdGF0ZSgidGV4dCIsc2l6ZT00LCB4PTUsIHk9MTMzLGxhYmVsPSAiSW5vY3VsYW50ZSA9IDAuMDgwIikrDQphbm5vdGF0ZSgidGV4dCIsc2l6ZT00LCB4PTUsIHk9MTI3LGxhYmVsPSAiRGlhcyA9IDwwLjAxIikrDQphbm5vdGF0ZSgidGV4dCIsc2l6ZT00LCB4PTUsIHk9MTIxLGxhYmVsPSAiSSAqIEQgPSAwLjA1NCIpKw0KY29vcmRfZml4ZWQocmF0aW8gPSA2LzE0MCkNCnBsb3QyDQoNCmdnc2F2ZSgiUGxvdF9QRy5wbmciLCBwbG90Miwgd2lkdGggPSA2LCBoZWlnaHQgPSA1LCB1bml0cyA9ICJpbiIsIGRwaSA9IDMwMCkNCmBgYA0KDQojIyBfKkRlc2RvYnJhbWVudG8gZGUgSW5vY3VsbyB2cyBEaWEqXw0KDQpgYGB7cn0NCg0KRE1PPWZhdDIuZGljKGRhdGFfYWxsJElub2N1bGFudGUsZGF0YV9hbGwkRGlhLCBkYXRhX2FsbCRETU8scXVhbGkgPSBjKFRSVUUsIFRSVUUpLG1jb21wID0gInR1a2V5IixmYWMubmFtZXMgPSBjKCJJbm9jdWxhbnRlIiwgIkRpYXMiKSxzaWdUID0gMC4wNSxzaWdGID0gMC4wNSx1bmZvbGQgPSBOVUxMKQ0KDQpMQUc9ZmF0Mi5kaWMoZGF0YV9hbGwkSW5vY3VsYW50ZSxkYXRhX2FsbCREaWEsIGRhdGFfYWxsJGwscXVhbGkgPSBjKFRSVUUsIFRSVUUpLG1jb21wID0gInR1a2V5IixmYWMubmFtZXMgPSBjKCJJbm9jdWxhbnRlIiwgIkRpYXMiKSxzaWdUID0gMC4wNSxzaWdGID0gMC4wNSx1bmZvbGQgPSBOVUxMKQ0KTEFHLm1lYW49IGRhdGFfYWxsICU+JWdyb3VwX2J5KElub2N1bGFudGUsIERpYSkgJT4lIHN1bW1hcmlzZShNZWRpYSA9IG1lYW4obCkpDQpMQUcubWVhbg0KDQpMQUc9ZmF0Mi5kaWMoZGF0YV9hbGwkSW5vY3VsYW50ZSxkYXRhX2FsbCREaWEsIGRhdGFfYWxsJGwscXVhbGkgPSBjKFRSVUUsIFRSVUUpLG1jb21wID0gInR1a2V5IixmYWMubmFtZXMgPSBjKCJJbm9jdWxhbnRlIiwgIkRpYXMiKSxzaWdUID0gMC4wNSxzaWdGID0gMC4wNSx1bmZvbGQgPSBOVUxMKQ0KTEFHLm1lYW49IGRhdGFfYWxsICU+JWdyb3VwX2J5KElub2N1bGFudGUsIERpYSkgJT4lIHN1bW1hcmlzZShNZWRpYSA9IG1lYW4obCkpDQpMQUcubWVhbg0KDQp0MC41PWZhdDIuZGljKGRhdGFfYWxsJElub2N1bGFudGUsZGF0YV9hbGwkRGlhLCBkYXRhX2FsbCR0MC41LHF1YWxpID0gYyhUUlVFLCBUUlVFKSxtY29tcCA9ICJ0dWtleSIsZmFjLm5hbWVzID0gYygiSW5vY3VsYW50ZSIsICJEaWFzIiksc2lnVCA9IDAuMDUsc2lnRiA9IDAuMDUsdW5mb2xkID0gTlVMTCkNCg0KSz1mYXQyLmRpYyhkYXRhX2FsbCRJbm9jdWxhbnRlLGRhdGFfYWxsJERpYSwgZGF0YV9hbGwkazEscXVhbGkgPSBjKFRSVUUsIFRSVUUpLG1jb21wID0gInR1a2V5IixmYWMubmFtZXMgPSBjKCJJbm9jdWxhbnRlIiwgIkRpYXMiKSxzaWdUID0gMC4wNSxzaWdGID0gMC4wNSx1bmZvbGQgPSBOVUxMKQ0KDQptdTAuNT1mYXQyLmRpYyhkYXRhX2FsbCRJbm9jdWxhbnRlLGRhdGFfYWxsJERpYSwgZGF0YV9hbGwkbXUwLjUscXVhbGkgPSBjKFRSVUUsIFRSVUUpLG1jb21wID0gInR1a2V5IixmYWMubmFtZXMgPSBjKCJJbm9jdWxhbnRlIiwgIkRpYXMiKSxzaWdUID0gMC4wNSxzaWdGID0gMC4wNSx1bmZvbGQgPSBOVUxMKQ0KYGBgDQoNCiMjIF8qRXhwb3J0YXIgZGFkb3MqXw0KDQpgYGB7cn0NCndyaXRlLnhsc3goZGF0YV9jb21iaW5hZG8sIGZpbGUgPSAiRDovQXJtYXplbmFtZW50by9EQVRBIFIvRGVib3JhaCBVRlBBL0RhZG9zIFVGUEEueGxzeCIsIHNoZWV0TmFtZSA9ICJEYWRvcyIsIHJvd25hbWVzID0gRkFMU0UpDQpgYGANCg0KDQoNCg0K