# Load necessary libraries
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(readr)

# Load the movies dataset
movies <- read_csv("https://gist.githubusercontent.com/tiangechen/b68782efa49a16edaf07dc2cdaa855ea/raw/0c794a9717f18b094eabab2cd6a6b9a226903577/movies.csv")
## Rows: 77 Columns: 8
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (4): Film, Genre, Lead Studio, Worldwide Gross
## dbl (4): Audience score %, Profitability, Rotten Tomatoes %, Year
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
# 1. rename(): Rename columns "Film" to "movie_title" and "Year" to "release_year"
movies_1 <- movies %>%
  rename(movie_title = Film, release_year = Year)
head(movies_1)
## # A tibble: 6 × 8
##   movie_title               Genre `Lead Studio` `Audience score %` Profitability
##   <chr>                     <chr> <chr>                      <dbl>         <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei…                 70          1.75
## 2 Youth in Revolt           Come… The Weinstei…                 52          1.09
## 3 You Will Meet a Tall Dar… Come… Independent                   35          1.21
## 4 When in Rome              Come… Disney                        44          0   
## 5 What Happens in Vegas     Come… Fox                           72          6.27
## 6 Water For Elephants       Drama 20th Century…                 72          3.08
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>
# 2. select(): Select specific columns
movies_2 <- movies_1 %>%
  select(movie_title, release_year, Genre, Profitability)
head(movies_2)
## # A tibble: 6 × 4
##   movie_title                        release_year Genre   Profitability
##   <chr>                                     <dbl> <chr>           <dbl>
## 1 Zack and Miri Make a Porno                 2008 Romance          1.75
## 2 Youth in Revolt                            2010 Comedy           1.09
## 3 You Will Meet a Tall Dark Stranger         2010 Comedy           1.21
## 4 When in Rome                               2010 Comedy           0   
## 5 What Happens in Vegas                      2008 Comedy           6.27
## 6 Water For Elephants                        2011 Drama            3.08
# 3. filter(): Filter movies released after 2000 and 'Rotten Tomatoes %' higher than 80
movies_3 <- movies_2 %>%
  filter(release_year > 2000, "Rotten Tomatoes %" > 80)
head(movies_3)
## # A tibble: 6 × 4
##   movie_title                        release_year Genre   Profitability
##   <chr>                                     <dbl> <chr>           <dbl>
## 1 Zack and Miri Make a Porno                 2008 Romance          1.75
## 2 Youth in Revolt                            2010 Comedy           1.09
## 3 You Will Meet a Tall Dark Stranger         2010 Comedy           1.21
## 4 When in Rome                               2010 Comedy           0   
## 5 What Happens in Vegas                      2008 Comedy           6.27
## 6 Water For Elephants                        2011 Drama            3.08
# 4. mutate(): Add "Profitability_millions" column
movies_4 <- movies_3 %>%
  mutate(Profitability_millions = Profitability / 1e6)
head(movies_4)
## # A tibble: 6 × 5
##   movie_title            release_year Genre Profitability Profitability_millions
##   <chr>                         <dbl> <chr>         <dbl>                  <dbl>
## 1 Zack and Miri Make a …         2008 Roma…          1.75             0.00000175
## 2 Youth in Revolt                2010 Come…          1.09             0.00000109
## 3 You Will Meet a Tall …         2010 Come…          1.21             0.00000121
## 4 When in Rome                   2010 Come…          0                0         
## 5 What Happens in Vegas          2008 Come…          6.27             0.00000627
## 6 Water For Elephants            2011 Drama          3.08             0.00000308
# 5. arrange(): Sort by Rotten Tomatoes % and then Profitability_millions in descending order
movies_5 <- movies_4 %>%
  arrange(desc("Rotten Tomatoes %"), desc(Profitability_millions))
head(movies_5)
## # A tibble: 6 × 5
##   movie_title            release_year Genre Profitability Profitability_millions
##   <chr>                         <dbl> <chr>         <dbl>                  <dbl>
## 1 Fireproof                      2008 Drama         66.9              0.0000669 
## 2 High School Musical 3…         2008 Come…         22.9              0.0000229 
## 3 The Twilight Saga: Ne…         2009 Drama         14.2              0.0000142 
## 4 Waitress                       2007 Roma…         11.1              0.0000111 
## 5 Twilight                       2008 Roma…         10.2              0.0000102 
## 6 Mamma Mia!                     2008 Come…          9.23             0.00000923
# 6. Combining functions: Chain all the above steps
final_movies <- movies %>%
  rename(movie_title = Film, release_year = Year) %>%
  select(movie_title, release_year, Genre, Profitability, `Rotten Tomatoes %`) %>%
  filter(release_year > 2000, `Rotten Tomatoes %` > 80) %>%
  mutate(Profitability_millions = Profitability / 1e6) %>%
  arrange(desc(`Rotten Tomatoes %`), desc(Profitability_millions))
head(final_movies)
## # A tibble: 6 × 6
##   movie_title       release_year Genre     Profitability `Rotten Tomatoes %`
##   <chr>                    <dbl> <chr>             <dbl>               <dbl>
## 1 WALL-E                    2008 Animation          2.90                  96
## 2 Midnight in Paris         2011 Romence            8.74                  93
## 3 Enchanted                 2007 Comedy             4.01                  93
## 4 Knocked Up                2007 Comedy             6.64                  91
## 5 Waitress                  2007 Romance           11.1                   89
## 6 A Serious Man             2009 Drama              4.38                  89
## # ℹ 1 more variable: Profitability_millions <dbl>
# 7. Interpretation:
# The best movies based on Rotten Tomatoes % do not always align with profitability. 
# This can be observed by examining the profitability_millions column alongside Rotten Tomatoes %.

# EXTRA CREDIT: Summarize average rating and profitability by Genre
summary_by_genre <- movies %>%
  rename(movie_title = Film, release_year = Year) %>%
  mutate(Profitability_millions = Profitability / 1e6) %>%
  group_by(Genre) %>%
  summarize(
    avg_rating = mean(`Rotten Tomatoes %`, na.rm = TRUE),
    avg_profitability = mean(Profitability_millions, na.rm = TRUE)
  )
summary_by_genre
## # A tibble: 10 × 3
##    Genre     avg_rating avg_profitability
##    <chr>          <dbl>             <dbl>
##  1 Action          11         0.00000125 
##  2 Animation       74.2       0.00000376 
##  3 Comdy           13         0.00000265 
##  4 Comedy          42.7       0.00000378 
##  5 Drama           51.5       0.00000841 
##  6 Fantasy         73         0.00000178 
##  7 Romance         42.1       0.00000398 
##  8 Romence         93         0.00000874 
##  9 comedy          87         0.00000810 
## 10 romance         54         0.000000653