library(readxl)
ia <- read_xlsx("D:/2.RESEARCH/0. Projects/MP38_Kha/IIA_for_R.xlsx")

Single ab_Wt and Ko

##a.PvMP38 and gst 4 #Subset of a.PVMP38 and gst 4

attach(ia)
library(magrittr)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(tidyr)
## 
## Attaching package: 'tidyr'
## The following object is masked from 'package:magrittr':
## 
##     extract
ia.v38 = ia %>% filter(ab_no==1, ab_name=="v38"|ab_name=="gst")
ia.v38 = filter(ia,ab_no==1, ab_name=="v38"|ab_name=="gst")

#Anova: a.PvMP38 and gst 4

anova.v38 = aov(iia ~ para_ab_conc, data = ia.v38)
summary(anova.v38)
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## para_ab_conc  8   4676   584.5   172.8 6.19e-09 ***
## Residuals     9     30     3.4                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#Post-hoc analysis:a.PvMP38 and gst 4

tukey.anova.v38= TukeyHSD(anova.v38)
options(digits= 4)
tukey.anova.v38
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = iia ~ para_ab_conc, data = ia.v38)
## 
## $para_ab_conc
##                          diff      lwr     upr  p adj
## ko.38_1.33-ko.38_0.66   7.020  -0.2554  14.295 0.0604
## ko.38_2-ko.38_0.66     13.995   6.7196  21.270 0.0006
## ko.38_4-ko.38_0.66     31.325  24.0496  38.600 0.0000
## wt.38_0.66-ko.38_0.66   9.975   2.6996  17.250 0.0074
## wt.38_1.33-ko.38_0.66  18.365  11.0896  25.640 0.0001
## wt.38_2-ko.38_0.66     38.170  30.8946  45.445 0.0000
## wt.38_4-ko.38_0.66     53.795  46.5196  61.070 0.0000
## wt.gst_4-ko.38_0.66    14.095   6.8196  21.370 0.0006
## ko.38_2-ko.38_1.33      6.975  -0.3004  14.250 0.0624
## ko.38_4-ko.38_1.33     24.305  17.0296  31.580 0.0000
## wt.38_0.66-ko.38_1.33   2.955  -4.3204  10.230 0.7822
## wt.38_1.33-ko.38_1.33  11.345   4.0696  18.620 0.0030
## wt.38_2-ko.38_1.33     31.150  23.8746  38.425 0.0000
## wt.38_4-ko.38_1.33     46.775  39.4996  54.050 0.0000
## wt.gst_4-ko.38_1.33     7.075  -0.2004  14.350 0.0580
## ko.38_4-ko.38_2        17.330  10.0546  24.605 0.0001
## wt.38_0.66-ko.38_2     -4.020 -11.2954   3.255 0.4802
## wt.38_1.33-ko.38_2      4.370  -2.9054  11.645 0.3908
## wt.38_2-ko.38_2        24.175  16.8996  31.450 0.0000
## wt.38_4-ko.38_2        39.800  32.5246  47.075 0.0000
## wt.gst_4-ko.38_2        0.100  -7.1754   7.375 1.0000
## wt.38_0.66-ko.38_4    -21.350 -28.6254 -14.075 0.0000
## wt.38_1.33-ko.38_4    -12.960 -20.2354  -5.685 0.0011
## wt.38_2-ko.38_4         6.845  -0.4304  14.120 0.0687
## wt.38_4-ko.38_4        22.470  15.1946  29.745 0.0000
## wt.gst_4-ko.38_4      -17.230 -24.5054  -9.955 0.0001
## wt.38_1.33-wt.38_0.66   8.390   1.1146  15.665 0.0222
## wt.38_2-wt.38_0.66     28.195  20.9196  35.470 0.0000
## wt.38_4-wt.38_0.66     43.820  36.5446  51.095 0.0000
## wt.gst_4-wt.38_0.66     4.120  -3.1554  11.395 0.4536
## wt.38_2-wt.38_1.33     19.805  12.5296  27.080 0.0000
## wt.38_4-wt.38_1.33     35.430  28.1546  42.705 0.0000
## wt.gst_4-wt.38_1.33    -4.270 -11.5454   3.005 0.4152
## wt.38_4-wt.38_2        15.625   8.3496  22.900 0.0003
## wt.gst_4-wt.38_2      -24.075 -31.3504 -16.800 0.0000
## wt.gst_4-wt.38_4      -39.700 -46.9754 -32.425 0.0000
#Tukey multiple comparisons of means
#95% family-wise confidence level
#Fit: aov(formula = IIA ~ Conc., data = ia.v38.wt)
#$Conc.

##v12 and gst 4 #subset_v12 and gst 4

ia.v12 = ia %>% filter(ab_no==1, ab_name=="v12"|ab_name=="gst")
ia.v12 = filter(ia,ab_no==1, ab_name=="v12"|ab_name=="gst")

#Anova_v12 and gst 4

anova.v12 = aov(iia ~ para_ab_conc, data = ia.v12)
summary(anova.v12)
##              Df Sum Sq Mean Sq F value  Pr(>F)    
## para_ab_conc  8   3603     450     237 1.5e-09 ***
## Residuals     9     17       2                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#Post-hoc analysis_v12 and gst 4

tukey.anova.v12= TukeyHSD(anova.v12)
options(digits= 4)
tukey.anova.v12
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = iia ~ para_ab_conc, data = ia.v12)
## 
## $para_ab_conc
##                          diff      lwr      upr  p adj
## ko.12_1.33-ko.12_0.66  10.895   5.4382  16.3518 0.0005
## ko.12_2-ko.12_0.66     23.630  18.1732  29.0868 0.0000
## ko.12_4-ko.12_0.66     36.125  30.6682  41.5818 0.0000
## wt.12_0.66-ko.12_0.66  -1.590  -7.0468   3.8668 0.9489
## wt.12_1.33-ko.12_0.66  10.180   4.7232  15.6368 0.0008
## wt.12_2-ko.12_0.66     16.525  11.0682  21.9818 0.0000
## wt.12_4-ko.12_0.66     40.405  34.9482  45.8618 0.0000
## wt.gst_4-ko.12_0.66     5.140  -0.3168  10.5968 0.0683
## ko.12_2-ko.12_1.33     12.735   7.2782  18.1918 0.0001
## ko.12_4-ko.12_1.33     25.230  19.7732  30.6868 0.0000
## wt.12_0.66-ko.12_1.33 -12.485 -17.9418  -7.0282 0.0002
## wt.12_1.33-ko.12_1.33  -0.715  -6.1718   4.7418 0.9997
## wt.12_2-ko.12_1.33      5.630   0.1732  11.0868 0.0422
## wt.12_4-ko.12_1.33     29.510  24.0532  34.9668 0.0000
## wt.gst_4-ko.12_1.33    -5.755 -11.2118  -0.2982 0.0373
## ko.12_4-ko.12_2        12.495   7.0382  17.9518 0.0002
## wt.12_0.66-ko.12_2    -25.220 -30.6768 -19.7632 0.0000
## wt.12_1.33-ko.12_2    -13.450 -18.9068  -7.9932 0.0001
## wt.12_2-ko.12_2        -7.105 -12.5618  -1.6482 0.0104
## wt.12_4-ko.12_2        16.775  11.3182  22.2318 0.0000
## wt.gst_4-ko.12_2      -18.490 -23.9468 -13.0332 0.0000
## wt.12_0.66-ko.12_4    -37.715 -43.1718 -32.2582 0.0000
## wt.12_1.33-ko.12_4    -25.945 -31.4018 -20.4882 0.0000
## wt.12_2-ko.12_4       -19.600 -25.0568 -14.1432 0.0000
## wt.12_4-ko.12_4         4.280  -1.1768   9.7368 0.1583
## wt.gst_4-ko.12_4      -30.985 -36.4418 -25.5282 0.0000
## wt.12_1.33-wt.12_0.66  11.770   6.3132  17.2268 0.0003
## wt.12_2-wt.12_0.66     18.115  12.6582  23.5718 0.0000
## wt.12_4-wt.12_0.66     41.995  36.5382  47.4518 0.0000
## wt.gst_4-wt.12_0.66     6.730   1.2732  12.1868 0.0147
## wt.12_2-wt.12_1.33      6.345   0.8882  11.8018 0.0211
## wt.12_4-wt.12_1.33     30.225  24.7682  35.6818 0.0000
## wt.gst_4-wt.12_1.33    -5.040 -10.4968   0.4168 0.0754
## wt.12_4-wt.12_2        23.880  18.4232  29.3368 0.0000
## wt.gst_4-wt.12_2      -11.385 -16.8418  -5.9282 0.0003
## wt.gst_4-wt.12_4      -35.265 -40.7218 -29.8082 0.0000

##v41 and gst 4 #subset_v41 and gst 4

ia.v41 = ia %>% filter(ab_no==1, ab_name=="v41"|ab_name=="gst")
ia.v12 = filter(ia,ab_no==1, ab_name=="v41"|ab_name=="gst")

#Anova_v41 and gst 4

anova.v41 = aov(iia ~ para_ab_conc, data = ia.v41)
summary(anova.v41)
##              Df Sum Sq Mean Sq F value  Pr(>F)    
## para_ab_conc  8   6081     760     150 1.2e-08 ***
## Residuals     9     46       5                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#Post-hoc analysis_v41 and gst 4

tukey.anova.v41= TukeyHSD(anova.v41)
options(digits= 4)
tukey.anova.v41
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = iia ~ para_ab_conc, data = ia.v41)
## 
## $para_ab_conc
##                          diff      lwr       upr  p adj
## ko.41_1.33-ko.41_0.66   6.760  -2.1581  15.67812 0.1816
## ko.41_2-ko.41_0.66     37.905  28.9869  46.82312 0.0000
## ko.41_4-ko.41_0.66     39.885  30.9669  48.80312 0.0000
## wt.41_0.66-ko.41_0.66  -3.265 -12.1831   5.65312 0.8537
## wt.41_1.33-ko.41_0.66   5.255  -3.6631  14.17312 0.4110
## wt.41_2-ko.41_0.66     31.030  22.1119  39.94812 0.0000
## wt.41_4-ko.41_0.66     45.080  36.1619  53.99812 0.0000
## wt.gst_4-ko.41_0.66     3.870  -5.0481  12.78812 0.7269
## ko.41_2-ko.41_1.33     31.145  22.2269  40.06312 0.0000
## ko.41_4-ko.41_1.33     33.125  24.2069  42.04312 0.0000
## wt.41_0.66-ko.41_1.33 -10.025 -18.9431  -1.10688 0.0259
## wt.41_1.33-ko.41_1.33  -1.505 -10.4231   7.41312 0.9981
## wt.41_2-ko.41_1.33     24.270  15.3519  33.18812 0.0000
## wt.41_4-ko.41_1.33     38.320  29.4019  47.23812 0.0000
## wt.gst_4-ko.41_1.33    -2.890 -11.8081   6.02812 0.9142
## ko.41_4-ko.41_2         1.980  -6.9381  10.89812 0.9889
## wt.41_0.66-ko.41_2    -41.170 -50.0881 -32.25188 0.0000
## wt.41_1.33-ko.41_2    -32.650 -41.5681 -23.73188 0.0000
## wt.41_2-ko.41_2        -6.875 -15.7931   2.04312 0.1698
## wt.41_4-ko.41_2         7.175  -1.7431  16.09312 0.1424
## wt.gst_4-ko.41_2      -34.035 -42.9531 -25.11688 0.0000
## wt.41_0.66-ko.41_4    -43.150 -52.0681 -34.23188 0.0000
## wt.41_1.33-ko.41_4    -34.630 -43.5481 -25.71188 0.0000
## wt.41_2-ko.41_4        -8.855 -17.7731   0.06312 0.0519
## wt.41_4-ko.41_4         5.195  -3.7231  14.11312 0.4232
## wt.gst_4-ko.41_4      -36.015 -44.9331 -27.09688 0.0000
## wt.41_1.33-wt.41_0.66   8.520  -0.3981  17.43812 0.0635
## wt.41_2-wt.41_0.66     34.295  25.3769  43.21312 0.0000
## wt.41_4-wt.41_0.66     48.345  39.4269  57.26312 0.0000
## wt.gst_4-wt.41_0.66     7.135  -1.7831  16.05312 0.1458
## wt.41_2-wt.41_1.33     25.775  16.8569  34.69312 0.0000
## wt.41_4-wt.41_1.33     39.825  30.9069  48.74312 0.0000
## wt.gst_4-wt.41_1.33    -1.385 -10.3031   7.53312 0.9989
## wt.41_4-wt.41_2        14.050   5.1319  22.96812 0.0028
## wt.gst_4-wt.41_2      -27.160 -36.0781 -18.24188 0.0000
## wt.gst_4-wt.41_4      -41.210 -50.1281 -32.29188 0.0000

combine 2 abs at 4 mg/ml_Wide type

##v38+v12 at 4 mg/ml_Wide type #Subset of v38+v12 at 4 mg/ml_Wide type

ia.v12_v38 = ia %>% filter(parasite=="WT",conc==4, ab_name=="v38"|ab_name=="v12"|ab_name=="v12_v38")
ia.v12_v38 = filter(ia,parasite=="WT",conc==4, ab_name=="v38"|ab_name=="v12"|ab_name=="v12_v38")

#Anova_v38+v12 at 4 mg/ml_Wide type

anova.v12_v38 = aov(iia ~ para_ab_conc, data = ia.v12_v38)
summary(anova.v12_v38)
##              Df Sum Sq Mean Sq F value  Pr(>F)    
## para_ab_conc  2    379   189.6     241 0.00049 ***
## Residuals     3      2     0.8                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#Post-hoc analysis_v38+v12 at 4 mg/ml_Wide type

tukey.anova.v12_v38= TukeyHSD(anova.v12_v38)
options(digits= 4)
tukey.anova.v12_v38
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = iia ~ para_ab_conc, data = ia.v12_v38)
## 
## $para_ab_conc
##                       diff      lwr     upr  p adj
## wt.12_4-wt.12_38_4 -18.640 -22.3492 -14.931 0.0005
## wt.38_4-wt.12_38_4 -14.205 -17.9142 -10.496 0.0011
## wt.38_4-wt.12_4      4.435   0.7258   8.144 0.0312

##v38+v41 at 4 mg/ml_Wide type #Subset of v38+v41 at 4 mg/ml_Wide type

ia.v41_v38 = ia %>% filter(parasite=="WT",conc==4, ab_name=="v38"|ab_name=="v41"|ab_name=="v41_v38")
ia.v41_v38 = filter(ia,parasite=="WT",conc==4, ab_name=="v38"|ab_name=="v41"|ab_name=="v41_v38")

#Anova_v38+v41 at 4 mg/ml_Wide type

anova.v41_v38 = aov(iia ~ para_ab_conc, data = ia.v41_v38)
summary(anova.v41_v38)
##              Df Sum Sq Mean Sq F value Pr(>F)  
## para_ab_conc  2  161.1    80.6    9.94  0.047 *
## Residuals     3   24.3     8.1                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#Post-hoc analysis_v38+v41 at 4 mg/ml_Wide type

tukey.anova.v41_v38= TukeyHSD(anova.v41_v38)
options(digits= 4)
tukey.anova.v41_v38
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = iia ~ para_ab_conc, data = ia.v41_v38)
## 
## $para_ab_conc
##                      diff      lwr    upr  p adj
## wt.41_38_4-wt.38_4  11.67  -0.2251 23.565 0.0525
## wt.41_4-wt.38_4      1.51 -10.3851 13.405 0.8629
## wt.41_4-wt.41_38_4 -10.16 -22.0551  1.735 0.0745

##v12+v41 at 4 mg/ml_Wide type #Subset of v12+v41 at 4 mg/ml_Wide type

ia.v12_v41 = ia %>% filter(parasite=="WT",conc==4, ab_name=="v41"|ab_name=="v12"|ab_name=="v12_v41")
ia.v12_v41 = filter(ia,parasite=="WT",conc==4, ab_name=="v41"|ab_name=="v12"|ab_name=="v12_v41")

#Anova_v41+v12 at 4 mg/ml_Wide type

anova.v12_v41 = aov(iia ~ para_ab_conc, data = ia.v12_v41)
summary(anova.v12_v41)
##              Df Sum Sq Mean Sq F value Pr(>F)  
## para_ab_conc  2    323   161.3    25.8  0.013 *
## Residuals     3     19     6.2                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#Post-hoc analysis_v41+v12 at 4 mg/ml

tukey.anova.v12_v41= TukeyHSD(anova.v12_v41)
options(digits= 4)
tukey.anova.v12_v41
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = iia ~ para_ab_conc, data = ia.v12_v41)
## 
## $para_ab_conc
##                       diff     lwr    upr  p adj
## wt.12_41_4-wt.12_4  17.650   7.206 28.094 0.0119
## wt.41_4-wt.12_4      5.945  -4.499 16.389 0.1862
## wt.41_4-wt.12_41_4 -11.705 -22.149 -1.261 0.0371

combine 2 abs at 4 mg/ml_kock out

##v38+v12 at 4 mg/ml_kock out #Subset of v38+v12 at 4 mg/ml_kock out

ia.v12_v38 = ia %>% filter(parasite=="KO",conc==4, ab_name=="v38"|ab_name=="v12"|ab_name=="v12_v38")
ia.v12_v38 = filter(ia,parasite=="KO",conc==4, ab_name=="v38"|ab_name=="v12"|ab_name=="v12_v38")

#Anova_v38+v12 at 4 mg/ml_kock out

anova.v12_v38 = aov(iia ~ para_ab_conc, data = ia.v12_v38)
summary(anova.v12_v38)
##              Df Sum Sq Mean Sq F value Pr(>F)   
## para_ab_conc  2    590   295.1     110 0.0016 **
## Residuals     3      8     2.7                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#Post-hoc analysis_v38+v12 at 4 mg/ml_kock out

tukey.anova.v12_v38= TukeyHSD(anova.v12_v38)
options(digits= 4)
tukey.anova.v12_v38
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = iia ~ para_ab_conc, data = ia.v12_v38)
## 
## $para_ab_conc
##                      diff    lwr     upr  p adj
## ko.12_4-ko.12_38_4 -10.47 -17.32  -3.611 0.0159
## ko.38_4-ko.12_38_4 -24.22 -31.07 -17.366 0.0014
## ko.38_4-ko.12_4    -13.75 -20.61  -6.901 0.0073

##v38+v41 at 4 mg/ml_kock out #Subset of v38+v41 at 4 mg/ml_kock out

ia.v41_v38 = ia %>% filter(parasite=="KO",conc==4, ab_name=="v38"|ab_name=="v41"|ab_name=="v41_v38")
ia.v41_v38 = filter(ia,parasite=="KO",conc==4, ab_name=="v38"|ab_name=="v41"|ab_name=="v41_v38")

#Anova_v38+v41 at 4 mg/ml_kock out

anova.v41_v38 = aov(iia ~ para_ab_conc, data = ia.v41_v38)
summary(anova.v41_v38)
##              Df Sum Sq Mean Sq F value Pr(>F)   
## para_ab_conc  2    706     353    93.4  0.002 **
## Residuals     3     11       4                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#Post-hoc analysis_v38+v41 at 4 mg/ml_kock out

tukey.anova.v41_v38= TukeyHSD(anova.v41_v38)
options(digits= 4)
tukey.anova.v41_v38
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = iia ~ para_ab_conc, data = ia.v41_v38)
## 
## $para_ab_conc
##                      diff    lwr    upr  p adj
## ko.41_38_4-ko.38_4 25.670  17.55 33.794 0.0020
## ko.41_4-ko.38_4    18.785  10.66 26.909 0.0048
## ko.41_4-ko.41_38_4 -6.885 -15.01  1.239 0.0760

##v12+v41 at 4 mg/ml_kock out #Subset of v12+v41 at 4 mg/ml_kock out

ia.v12_v41 = ia %>% filter(parasite=="KO",conc==4, ab_name=="v41"|ab_name=="v12"|ab_name=="v12_v41")
ia.v12_v41 = filter(ia,parasite=="KO",conc==4, ab_name=="v41"|ab_name=="v12"|ab_name=="v12_v41")

#Anova_v41+v12 at 4 mg/ml_kock out

anova.v12_v41 = aov(iia ~ para_ab_conc, data = ia.v12_v41)
summary(anova.v12_v41)
##              Df Sum Sq Mean Sq F value Pr(>F)   
## para_ab_conc  2  305.2   152.6    34.5 0.0085 **
## Residuals     3   13.3     4.4                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#Post-hoc analysis_v41+v12 at 4 mg/ml_kock out

tukey.anova.v12_v41= TukeyHSD(anova.v12_v41)
options(digits= 4)
tukey.anova.v12_v41
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = iia ~ para_ab_conc, data = ia.v12_v41)
## 
## $para_ab_conc
##                      diff     lwr    upr  p adj
## ko.12_41_4-ko.12_4  17.00   8.213 25.797 0.0081
## ko.41_4-ko.12_4      5.03  -3.762 13.822 0.1843
## ko.41_4-ko.12_41_4 -11.98 -20.767 -3.183 0.0218

combine 2 abs at 2 mg/ml_Wide type

##v38+v12 at 2 mg/ml_Wide type #Subset of v38+v12 at 2 mg/ml_Wide type

ia.v12_v38 = ia %>% filter(parasite=="WT",conc==2, ab_name=="v38"|ab_name=="v12"|ab_name=="v12_v38")
ia.v12_v38 = filter(ia,parasite=="WT",conc==2, ab_name=="v38"|ab_name=="v12"|ab_name=="v12_v38")

#Anova_v38+v12 at 2 mg/ml_Wide type

anova.v12_v38 = aov(iia ~ para_ab_conc, data = ia.v12_v38)
summary(anova.v12_v38)
##              Df Sum Sq Mean Sq F value  Pr(>F)    
## para_ab_conc  2    694     347     193 0.00068 ***
## Residuals     3      5       2                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#Post-hoc analysis_v38+v12 at 2 mg/ml_Wide type

tukey.anova.v12_v38= TukeyHSD(anova.v12_v38)
options(digits= 4)
tukey.anova.v12_v38
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = iia ~ para_ab_conc, data = ia.v12_v38)
## 
## $para_ab_conc
##                      diff     lwr    upr  p adj
## wt.12_38_4-wt.12_2  26.33  20.724 31.936 0.0006
## wt.38_2-wt.12_2     12.69   7.084 18.296 0.0051
## wt.38_2-wt.12_38_4 -13.64 -19.246 -8.034 0.0042

###v38+v41 at 2 mg/ml_Wide type #Subset of v38+v41 at 2 mg/ml_Wide type

ia.v41_v38 = ia %>% filter(parasite=="WT",conc==2, ab_name=="v38"|ab_name=="v41"|ab_name=="v41_v38")
ia.v41_v38 = filter(ia,parasite=="WT",conc==2, ab_name=="v38"|ab_name=="v41"|ab_name=="v41_v38")

#Anova_v38+v41 at 2 mg/ml_Wide type

anova.v41_v38 = aov(iia ~ para_ab_conc, data = ia.v41_v38)
summary(anova.v41_v38)
##              Df Sum Sq Mean Sq F value Pr(>F)
## para_ab_conc  2   81.5    40.7    4.33   0.13
## Residuals     3   28.2     9.4

#Post-hoc analysis_v38+v41 at 2 mg/ml_Wide type

tukey.anova.v41_v38= TukeyHSD(anova.v41_v38)
options(digits= 4)
tukey.anova.v41_v38
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = iia ~ para_ab_conc, data = ia.v41_v38)
## 
## $para_ab_conc
##                     diff    lwr   upr  p adj
## wt.41_2-wt.38_2    3.085 -9.737 15.91 0.6232
## wt.41_38_4-wt.38_2 8.890 -3.932 21.71 0.1220
## wt.41_38_4-wt.41_2 5.805 -7.017 18.63 0.2851

##v12+v41 at 2 mg/ml_Wide type #Subset of v12+v41 at 2 mg/ml_Wide type

ia.v12_v41 = ia %>% filter(parasite=="WT",conc==2, ab_name=="v41"|ab_name=="v12"|ab_name=="v12_v41")
ia.v12_v41 = filter(ia,parasite=="WT",conc==2, ab_name=="v41"|ab_name=="v12"|ab_name=="v12_v41")

#Anova_v41+v12 at 2 mg/ml_Wide type

anova.v12_v41 = aov(iia ~ para_ab_conc, data = ia.v12_v41)
summary(anova.v12_v41)
##              Df Sum Sq Mean Sq F value  Pr(>F)    
## para_ab_conc  2   1073     537     723 9.4e-05 ***
## Residuals     3      2       1                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#Post-hoc analysis_v41+v12 at 2 mg/ml_Wide type

tukey.anova.v12_v41= TukeyHSD(anova.v12_v41)
options(digits= 4)
tukey.anova.v12_v41
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = iia ~ para_ab_conc, data = ia.v12_v41)
## 
## $para_ab_conc
##                      diff    lwr    upr p adj
## wt.12_41_4-wt.12_2  32.75  29.15  36.35 0e+00
## wt.41_2-wt.12_2     15.77  12.17  19.38 8e-04
## wt.41_2-wt.12_41_4 -16.98 -20.58 -13.37 6e-04

combine 2 abs at 2 mg/ml_knock out

##v38+v12 at 2 mg/ml_knock out #Subset of v38+v12 at 2 mg/ml_knock out

ia.v12_v38 = ia %>% filter(parasite=="KO",conc==2, ab_name=="v38"|ab_name=="v12"|ab_name=="v12_v38")
ia.v12_v38 = filter(ia,parasite=="KO",conc==2, ab_name=="v38"|ab_name=="v12"|ab_name=="v12_v38")

#Anova_v38+v12 at 2 mg/ml_knock out

anova.v12_v38 = aov(iia ~ para_ab_conc, data = ia.v12_v38)
summary(anova.v12_v38)
##              Df Sum Sq Mean Sq F value Pr(>F)   
## para_ab_conc  2    523   261.5    41.1 0.0066 **
## Residuals     3     19     6.4                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#Post-hoc analysis_v38+v12 at 2 mg/ml_knock out

tukey.anova.v12_v38= TukeyHSD(anova.v12_v38)
options(digits= 4)
tukey.anova.v12_v38
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = iia ~ para_ab_conc, data = ia.v12_v38)
## 
## $para_ab_conc
##                      diff     lwr     upr  p adj
## ko.12_38_4-ko.12_2   2.24  -8.305  12.785 0.6833
## ko.38_2-ko.12_2    -18.59 -29.135  -8.045 0.0106
## ko.38_2-ko.12_38_4 -20.83 -31.375 -10.285 0.0076

###v38+v41 at 2 mg/ml_knock out #Subset of v38+v41 at 2 mg/ml_knock out

ia.v41_v38 = ia %>% filter(parasite=="KO",conc==2, ab_name=="v38"|ab_name=="v41"|ab_name=="v41_v38")
ia.v41_v38 = filter(ia,parasite=="KO",conc==2, ab_name=="v38"|ab_name=="v41"|ab_name=="v41_v38")

#Anova_v38+v41 at 2 mg/ml_knock out

anova.v41_v38 = aov(iia ~ para_ab_conc, data = ia.v41_v38)
summary(anova.v41_v38)
##              Df Sum Sq Mean Sq F value Pr(>F)   
## para_ab_conc  2   1323     662     118 0.0014 **
## Residuals     3     17       6                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#Post-hoc analysis_v38+v41 at 2 mg/ml_knock out

tukey.anova.v41_v38= TukeyHSD(anova.v41_v38)
options(digits= 4)
tukey.anova.v41_v38
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = iia ~ para_ab_conc, data = ia.v41_v38)
## 
## $para_ab_conc
##                      diff    lwr    upr  p adj
## ko.41_2-ko.38_2    34.135  24.22 44.052 0.0015
## ko.41_38_4-ko.38_2 27.960  18.04 37.877 0.0027
## ko.41_38_4-ko.41_2 -6.175 -16.09  3.742 0.1545

##v12+v41 at 2 mg/ml_knock out #Subset of v12+v41 at 2 mg/ml_knock out

ia.v12_v41 = ia %>% filter(parasite=="KO",conc==2, ab_name=="v41"|ab_name=="v12"|ab_name=="v12_v41")
ia.v12_v41 = filter(ia,parasite=="KO",conc==2, ab_name=="v41"|ab_name=="v12"|ab_name=="v12_v41")

#Anova_v41+v12 at 2 mg/ml_knock out

anova.v12_v41 = aov(iia ~ para_ab_conc, data = ia.v12_v41)
summary(anova.v12_v41)
##              Df Sum Sq Mean Sq F value  Pr(>F)    
## para_ab_conc  2    468   234.0     268 0.00042 ***
## Residuals     3      3     0.9                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#Post-hoc analysis_v41+v12 at 2 mg/ml_knock out

tukey.anova.v12_v41= TukeyHSD(anova.v12_v41)
options(digits= 4)
tukey.anova.v12_v41
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = iia ~ para_ab_conc, data = ia.v12_v41)
## 
## $para_ab_conc
##                      diff    lwr    upr  p adj
## ko.12_41_4-ko.12_2 20.800 16.894 24.706 0.0004
## ko.41_2-ko.12_2    15.545 11.639 19.451 0.0010
## ko.41_2-ko.12_41_4 -5.255 -9.161 -1.349 0.0226

###combine 3 Abs_Wt and Ko #Subset 3 Abs

ia.combine = ia %>% filter(ab_no==3 | ab_no==1 & conc==4)
ia.combine = filter(ia,ab_no==3 | ab_no==1 & conc==4)

#Anova_combine 3 Abs

anova.3 = aov(iia ~ para_ab_conc, data = ia.combine)
summary(anova.3)
##              Df Sum Sq Mean Sq F value  Pr(>F)    
## para_ab_conc 18   6628     368    65.7 2.3e-13 ***
## Residuals    19    106       6                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#Post-hoc analysis_combine 3 Abs

tukey.anova.3= TukeyHSD(anova.3)
options(digits= 4)
tukey.anova.3
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = iia ~ para_ab_conc, data = ia.combine)
## 
## $para_ab_conc
##                                        diff       lwr       upr  p adj
## ko.12.41.38_0.66-ko.12.41.38_0.33     1.135  -8.40663  10.67663 1.0000
## ko.12.41.38_1.33-ko.12.41.38_0.33    13.630   4.08837  23.17163 0.0015
## ko.12.41.GST_0.33-ko.12.41.38_0.33   -0.180  -9.72163   9.36163 1.0000
## ko.12.41.GST_0.66-ko.12.41.38_0.33   17.680   8.13837  27.22163 0.0001
## ko.12.41.GST_1.33-ko.12.41.38_0.33   20.730  11.18837  30.27163 0.0000
## ko.12_4-ko.12.41.38_0.33             12.205   2.66337  21.74663 0.0052
## ko.38_4-ko.12.41.38_0.33             -1.550 -11.09163   7.99163 1.0000
## ko.41_4-ko.12.41.38_0.33             17.235   7.69337  26.77663 0.0001
## wt.12.41.38_0.33-ko.12.41.38_0.33    14.030   4.48837  23.57163 0.0011
## wt.12.41.38_0.66-ko.12.41.38_0.33    27.130  17.58837  36.67163 0.0000
## wt.12.41.38_1.33-ko.12.41.38_0.33    43.320  33.77837  52.86163 0.0000
## wt.12.41.GST_0.33-ko.12.41.38_0.33    5.665  -3.87663  15.20663 0.6406
## wt.12.41.GST_0.66-ko.12.41.38_0.33   11.490   1.94837  21.03163 0.0096
## wt.12.41.GST_1.33-ko.12.41.38_0.33   25.985  16.44337  35.52663 0.0000
## wt.12_4-ko.12.41.38_0.33             16.485   6.94337  26.02663 0.0001
## wt.38_4-ko.12.41.38_0.33             20.920  11.37837  30.46163 0.0000
## wt.41_4-ko.12.41.38_0.33             22.430  12.88837  31.97163 0.0000
## wt.gst_4-ko.12.41.38_0.33           -18.780 -28.32163  -9.23837 0.0000
## ko.12.41.38_1.33-ko.12.41.38_0.66    12.495   2.95337  22.03663 0.0040
## ko.12.41.GST_0.33-ko.12.41.38_0.66   -1.315 -10.85663   8.22663 1.0000
## ko.12.41.GST_0.66-ko.12.41.38_0.66   16.545   7.00337  26.08663 0.0001
## ko.12.41.GST_1.33-ko.12.41.38_0.66   19.595  10.05337  29.13663 0.0000
## ko.12_4-ko.12.41.38_0.66             11.070   1.52837  20.61163 0.0138
## ko.38_4-ko.12.41.38_0.66             -2.685 -12.22663   6.85663 0.9992
## ko.41_4-ko.12.41.38_0.66             16.100   6.55837  25.64163 0.0002
## wt.12.41.38_0.33-ko.12.41.38_0.66    12.895   3.35337  22.43663 0.0028
## wt.12.41.38_0.66-ko.12.41.38_0.66    25.995  16.45337  35.53663 0.0000
## wt.12.41.38_1.33-ko.12.41.38_0.66    42.185  32.64337  51.72663 0.0000
## wt.12.41.GST_0.33-ko.12.41.38_0.66    4.530  -5.01163  14.07163 0.8885
## wt.12.41.GST_0.66-ko.12.41.38_0.66   10.355   0.81337  19.89663 0.0254
## wt.12.41.GST_1.33-ko.12.41.38_0.66   24.850  15.30837  34.39163 0.0000
## wt.12_4-ko.12.41.38_0.66             15.350   5.80837  24.89163 0.0004
## wt.38_4-ko.12.41.38_0.66             19.785  10.24337  29.32663 0.0000
## wt.41_4-ko.12.41.38_0.66             21.295  11.75337  30.83663 0.0000
## wt.gst_4-ko.12.41.38_0.66           -19.915 -29.45663 -10.37337 0.0000
## ko.12.41.GST_0.33-ko.12.41.38_1.33  -13.810 -23.35163  -4.26837 0.0013
## ko.12.41.GST_0.66-ko.12.41.38_1.33    4.050  -5.49163  13.59163 0.9498
## ko.12.41.GST_1.33-ko.12.41.38_1.33    7.100  -2.44163  16.64163 0.3042
## ko.12_4-ko.12.41.38_1.33             -1.425 -10.96663   8.11663 1.0000
## ko.38_4-ko.12.41.38_1.33            -15.180 -24.72163  -5.63837 0.0004
## ko.41_4-ko.12.41.38_1.33              3.605  -5.93663  13.14663 0.9812
## wt.12.41.38_0.33-ko.12.41.38_1.33     0.400  -9.14163   9.94163 1.0000
## wt.12.41.38_0.66-ko.12.41.38_1.33    13.500   3.95837  23.04163 0.0017
## wt.12.41.38_1.33-ko.12.41.38_1.33    29.690  20.14837  39.23163 0.0000
## wt.12.41.GST_0.33-ko.12.41.38_1.33   -7.965 -17.50663   1.57663 0.1697
## wt.12.41.GST_0.66-ko.12.41.38_1.33   -2.140 -11.68163   7.40163 1.0000
## wt.12.41.GST_1.33-ko.12.41.38_1.33   12.355   2.81337  21.89663 0.0045
## wt.12_4-ko.12.41.38_1.33              2.855  -6.68663  12.39663 0.9983
## wt.38_4-ko.12.41.38_1.33              7.290  -2.25163  16.83163 0.2695
## wt.41_4-ko.12.41.38_1.33              8.800  -0.74163  18.34163 0.0906
## wt.gst_4-ko.12.41.38_1.33           -32.410 -41.95163 -22.86837 0.0000
## ko.12.41.GST_0.66-ko.12.41.GST_0.33  17.860   8.31837  27.40163 0.0000
## ko.12.41.GST_1.33-ko.12.41.GST_0.33  20.910  11.36837  30.45163 0.0000
## ko.12_4-ko.12.41.GST_0.33            12.385   2.84337  21.92663 0.0044
## ko.38_4-ko.12.41.GST_0.33            -1.370 -10.91163   8.17163 1.0000
## ko.41_4-ko.12.41.GST_0.33            17.415   7.87337  26.95663 0.0001
## wt.12.41.38_0.33-ko.12.41.GST_0.33   14.210   4.66837  23.75163 0.0009
## wt.12.41.38_0.66-ko.12.41.GST_0.33   27.310  17.76837  36.85163 0.0000
## wt.12.41.38_1.33-ko.12.41.GST_0.33   43.500  33.95837  53.04163 0.0000
## wt.12.41.GST_0.33-ko.12.41.GST_0.33   5.845  -3.69663  15.38663 0.5946
## wt.12.41.GST_0.66-ko.12.41.GST_0.33  11.670   2.12837  21.21163 0.0082
## wt.12.41.GST_1.33-ko.12.41.GST_0.33  26.165  16.62337  35.70663 0.0000
## wt.12_4-ko.12.41.GST_0.33            16.665   7.12337  26.20663 0.0001
## wt.38_4-ko.12.41.GST_0.33            21.100  11.55837  30.64163 0.0000
## wt.41_4-ko.12.41.GST_0.33            22.610  13.06837  32.15163 0.0000
## wt.gst_4-ko.12.41.GST_0.33          -18.600 -28.14163  -9.05837 0.0000
## ko.12.41.GST_1.33-ko.12.41.GST_0.66   3.050  -6.49163  12.59163 0.9964
## ko.12_4-ko.12.41.GST_0.66            -5.475 -15.01663   4.06663 0.6886
## ko.38_4-ko.12.41.GST_0.66           -19.230 -28.77163  -9.68837 0.0000
## ko.41_4-ko.12.41.GST_0.66            -0.445  -9.98663   9.09663 1.0000
## wt.12.41.38_0.33-ko.12.41.GST_0.66   -3.650 -13.19163   5.89163 0.9789
## wt.12.41.38_0.66-ko.12.41.GST_0.66    9.450  -0.09163  18.99163 0.0539
## wt.12.41.38_1.33-ko.12.41.GST_0.66   25.640  16.09837  35.18163 0.0000
## wt.12.41.GST_0.33-ko.12.41.GST_0.66 -12.015 -21.55663  -2.47337 0.0061
## wt.12.41.GST_0.66-ko.12.41.GST_0.66  -6.190 -15.73163   3.35163 0.5070
## wt.12.41.GST_1.33-ko.12.41.GST_0.66   8.305  -1.23663  17.84663 0.1323
## wt.12_4-ko.12.41.GST_0.66            -1.195 -10.73663   8.34663 1.0000
## wt.38_4-ko.12.41.GST_0.66             3.240  -6.30163  12.78163 0.9933
## wt.41_4-ko.12.41.GST_0.66             4.750  -4.79163  14.29163 0.8503
## wt.gst_4-ko.12.41.GST_0.66          -36.460 -46.00163 -26.91837 0.0000
## ko.12_4-ko.12.41.GST_1.33            -8.525 -18.06663   1.01663 0.1120
## ko.38_4-ko.12.41.GST_1.33           -22.280 -31.82163 -12.73837 0.0000
## ko.41_4-ko.12.41.GST_1.33            -3.495 -13.03663   6.04663 0.9858
## wt.12.41.38_0.33-ko.12.41.GST_1.33   -6.700 -16.24163   2.84163 0.3865
## wt.12.41.38_0.66-ko.12.41.GST_1.33    6.400  -3.14163  15.94163 0.4557
## wt.12.41.38_1.33-ko.12.41.GST_1.33   22.590  13.04837  32.13163 0.0000
## wt.12.41.GST_0.33-ko.12.41.GST_1.33 -15.065 -24.60663  -5.52337 0.0004
## wt.12.41.GST_0.66-ko.12.41.GST_1.33  -9.240 -18.78163   0.30163 0.0639
## wt.12.41.GST_1.33-ko.12.41.GST_1.33   5.255  -4.28663  14.79663 0.7421
## wt.12_4-ko.12.41.GST_1.33            -4.245 -13.78663   5.29663 0.9286
## wt.38_4-ko.12.41.GST_1.33             0.190  -9.35163   9.73163 1.0000
## wt.41_4-ko.12.41.GST_1.33             1.700  -7.84163  11.24163 1.0000
## wt.gst_4-ko.12.41.GST_1.33          -39.510 -49.05163 -29.96837 0.0000
## ko.38_4-ko.12_4                     -13.755 -23.29663  -4.21337 0.0014
## ko.41_4-ko.12_4                       5.030  -4.51163  14.57163 0.7933
## wt.12.41.38_0.33-ko.12_4              1.825  -7.71663  11.36663 1.0000
## wt.12.41.38_0.66-ko.12_4             14.925   5.38337  24.46663 0.0005
## wt.12.41.38_1.33-ko.12_4             31.115  21.57337  40.65663 0.0000
## wt.12.41.GST_0.33-ko.12_4            -6.540 -16.08163   3.00163 0.4227
## wt.12.41.GST_0.66-ko.12_4            -0.715 -10.25663   8.82663 1.0000
## wt.12.41.GST_1.33-ko.12_4            13.780   4.23837  23.32163 0.0013
## wt.12_4-ko.12_4                       4.280  -5.26163  13.82163 0.9243
## wt.38_4-ko.12_4                       8.715  -0.82663  18.25663 0.0968
## wt.41_4-ko.12_4                      10.225   0.68337  19.76663 0.0283
## wt.gst_4-ko.12_4                    -30.985 -40.52663 -21.44337 0.0000
## ko.41_4-ko.38_4                      18.785   9.24337  28.32663 0.0000
## wt.12.41.38_0.33-ko.38_4             15.580   6.03837  25.12163 0.0003
## wt.12.41.38_0.66-ko.38_4             28.680  19.13837  38.22163 0.0000
## wt.12.41.38_1.33-ko.38_4             44.870  35.32837  54.41163 0.0000
## wt.12.41.GST_0.33-ko.38_4             7.215  -2.32663  16.75663 0.2828
## wt.12.41.GST_0.66-ko.38_4            13.040   3.49837  22.58163 0.0025
## wt.12.41.GST_1.33-ko.38_4            27.535  17.99337  37.07663 0.0000
## wt.12_4-ko.38_4                      18.035   8.49337  27.57663 0.0000
## wt.38_4-ko.38_4                      22.470  12.92837  32.01163 0.0000
## wt.41_4-ko.38_4                      23.980  14.43837  33.52163 0.0000
## wt.gst_4-ko.38_4                    -17.230 -26.77163  -7.68837 0.0001
## wt.12.41.38_0.33-ko.41_4             -3.205 -12.74663   6.33663 0.9940
## wt.12.41.38_0.66-ko.41_4              9.895   0.35337  19.43663 0.0373
## wt.12.41.38_1.33-ko.41_4             26.085  16.54337  35.62663 0.0000
## wt.12.41.GST_0.33-ko.41_4           -11.570 -21.11163  -2.02837 0.0090
## wt.12.41.GST_0.66-ko.41_4            -5.745 -15.28663   3.79663 0.6202
## wt.12.41.GST_1.33-ko.41_4             8.750  -0.79163  18.29163 0.0942
## wt.12_4-ko.41_4                      -0.750 -10.29163   8.79163 1.0000
## wt.38_4-ko.41_4                       3.685  -5.85663  13.22663 0.9771
## wt.41_4-ko.41_4                       5.195  -4.34663  14.73663 0.7561
## wt.gst_4-ko.41_4                    -36.015 -45.55663 -26.47337 0.0000
## wt.12.41.38_0.66-wt.12.41.38_0.33    13.100   3.55837  22.64163 0.0024
## wt.12.41.38_1.33-wt.12.41.38_0.33    29.290  19.74837  38.83163 0.0000
## wt.12.41.GST_0.33-wt.12.41.38_0.33   -8.365 -17.90663   1.17663 0.1265
## wt.12.41.GST_0.66-wt.12.41.38_0.33   -2.540 -12.08163   7.00163 0.9996
## wt.12.41.GST_1.33-wt.12.41.38_0.33   11.955   2.41337  21.49663 0.0064
## wt.12_4-wt.12.41.38_0.33              2.455  -7.08663  11.99663 0.9997
## wt.38_4-wt.12.41.38_0.33              6.890  -2.65163  16.43163 0.3459
## wt.41_4-wt.12.41.38_0.33              8.400  -1.14163  17.94163 0.1232
## wt.gst_4-wt.12.41.38_0.33           -32.810 -42.35163 -23.26837 0.0000
## wt.12.41.38_1.33-wt.12.41.38_0.66    16.190   6.64837  25.73163 0.0002
## wt.12.41.GST_0.33-wt.12.41.38_0.66  -21.465 -31.00663 -11.92337 0.0000
## wt.12.41.GST_0.66-wt.12.41.38_0.66  -15.640 -25.18163  -6.09837 0.0003
## wt.12.41.GST_1.33-wt.12.41.38_0.66   -1.145 -10.68663   8.39663 1.0000
## wt.12_4-wt.12.41.38_0.66            -10.645 -20.18663  -1.10337 0.0198
## wt.38_4-wt.12.41.38_0.66             -6.210 -15.75163   3.33163 0.5021
## wt.41_4-wt.12.41.38_0.66             -4.700 -14.24163   4.84163 0.8595
## wt.gst_4-wt.12.41.38_0.66           -45.910 -55.45163 -36.36837 0.0000
## wt.12.41.GST_0.33-wt.12.41.38_1.33  -37.655 -47.19663 -28.11337 0.0000
## wt.12.41.GST_0.66-wt.12.41.38_1.33  -31.830 -41.37163 -22.28837 0.0000
## wt.12.41.GST_1.33-wt.12.41.38_1.33  -17.335 -26.87663  -7.79337 0.0001
## wt.12_4-wt.12.41.38_1.33            -26.835 -36.37663 -17.29337 0.0000
## wt.38_4-wt.12.41.38_1.33            -22.400 -31.94163 -12.85837 0.0000
## wt.41_4-wt.12.41.38_1.33            -20.890 -30.43163 -11.34837 0.0000
## wt.gst_4-wt.12.41.38_1.33           -62.100 -71.64163 -52.55837 0.0000
## wt.12.41.GST_0.66-wt.12.41.GST_0.33   5.825  -3.71663  15.36663 0.5997
## wt.12.41.GST_1.33-wt.12.41.GST_0.33  20.320  10.77837  29.86163 0.0000
## wt.12_4-wt.12.41.GST_0.33            10.820   1.27837  20.36163 0.0171
## wt.38_4-wt.12.41.GST_0.33            15.255   5.71337  24.79663 0.0004
## wt.41_4-wt.12.41.GST_0.33            16.765   7.22337  26.30663 0.0001
## wt.gst_4-wt.12.41.GST_0.33          -24.445 -33.98663 -14.90337 0.0000
## wt.12.41.GST_1.33-wt.12.41.GST_0.66  14.495   4.95337  24.03663 0.0007
## wt.12_4-wt.12.41.GST_0.66             4.995  -4.54663  14.53663 0.8009
## wt.38_4-wt.12.41.GST_0.66             9.430  -0.11163  18.97163 0.0548
## wt.41_4-wt.12.41.GST_0.66            10.940   1.39837  20.48163 0.0154
## wt.gst_4-wt.12.41.GST_0.66          -30.270 -39.81163 -20.72837 0.0000
## wt.12_4-wt.12.41.GST_1.33            -9.500 -19.04163   0.04163 0.0517
## wt.38_4-wt.12.41.GST_1.33            -5.065 -14.60663   4.47663 0.7856
## wt.41_4-wt.12.41.GST_1.33            -3.555 -13.09663   5.98663 0.9834
## wt.gst_4-wt.12.41.GST_1.33          -44.765 -54.30663 -35.22337 0.0000
## wt.38_4-wt.12_4                       4.435  -5.10663  13.97663 0.9031
## wt.41_4-wt.12_4                       5.945  -3.59663  15.48663 0.5690
## wt.gst_4-wt.12_4                    -35.265 -44.80663 -25.72337 0.0000
## wt.41_4-wt.38_4                       1.510  -8.03163  11.05163 1.0000
## wt.gst_4-wt.38_4                    -39.700 -49.24163 -30.15837 0.0000
## wt.gst_4-wt.41_4                    -41.210 -50.75163 -31.66837 0.0000