library(readxl)
pa <- read_xlsx("D:/2.RESEARCH/0. Projects/MP38_Kha/PA_for_R.xlsx")

#Anova

anova.pa = aov(mfi ~ group, data = pa)
summary(anova.pa)
##              Df Sum Sq Mean Sq F value Pr(>F)    
## group         5  107.7  21.542   30.94 <2e-16 ***
## Residuals   378  263.2   0.696                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#Post-hoc analysis

tukey.anova.pa= TukeyHSD(anova.pa)
options(digits= 4)
tukey.anova.pa
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = mfi ~ group, data = pa)
## 
## $group
##                       diff      lwr     upr  p adj
## h_native-h_heat    0.16839 -0.25413  0.5909 0.8637
## k_heat-h_heat      0.61735  0.18000  1.0547 0.0009
## k_native-h_heat    0.53894  0.10159  0.9763 0.0062
## v_heat-h_heat      1.60219  1.19158  2.0128 0.0000
## v_native-h_heat    0.67708  0.26646  1.0877 0.0000
## k_heat-h_native    0.44897  0.01161  0.8863 0.0404
## k_native-h_native  0.37055 -0.06680  0.8079 0.1496
## v_heat-h_native    1.43381  1.02319  1.8444 0.0000
## v_native-h_native  0.50869  0.09807  0.9193 0.0058
## k_native-k_heat   -0.07841 -0.53011  0.3733 0.9963
## v_heat-k_heat      0.98484  0.55898  1.4107 0.0000
## v_native-k_heat    0.05972 -0.36614  0.4856 0.9986
## v_heat-k_native    1.06325  0.63739  1.4891 0.0000
## v_native-k_native  0.13814 -0.28772  0.5640 0.9388
## v_native-v_heat   -0.92512 -1.32347 -0.5268 0.0000