library(dplyr)
library(wooldridge)
library(car)
data("barium")
data("volat")

C2

(i)

model_i <- lm(lchnimp ~ lchempi + lgas + lrtwex + befile6 + affile6 + afdec6 + t, data = barium)
summary(model_i)
## 
## Call:
## lm(formula = lchnimp ~ lchempi + lgas + lrtwex + befile6 + affile6 + 
##     afdec6 + t, data = barium)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.94317 -0.31168  0.03172  0.36366  1.21218 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)   
## (Intercept) -2.367526  20.782165  -0.114  0.90949   
## lchempi     -0.686236   1.239711  -0.554  0.58089   
## lgas         0.465679   0.876178   0.531  0.59604   
## lrtwex       0.078224   0.472440   0.166  0.86876   
## befile6      0.090470   0.251289   0.360  0.71945   
## affile6      0.097006   0.257313   0.377  0.70683   
## afdec6      -0.351502   0.282542  -1.244  0.21584   
## t            0.012706   0.003844   3.305  0.00124 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5748 on 123 degrees of freedom
## Multiple R-squared:  0.3616, Adjusted R-squared:  0.3252 
## F-statistic: 9.951 on 7 and 123 DF,  p-value: 8.358e-10

None of the variables other than the time trend is statsitically significant.

(ii)

linearHypothesis(model_i, c("lchempi = 0", "lgas = 0", "lrtwex = 0", "befile6 = 0", "affile6 = 0", "afdec6 = 0"))
## 
## Linear hypothesis test:
## lchempi = 0
## lgas = 0
## lrtwex = 0
## befile6 = 0
## affile6 = 0
## afdec6 = 0
## 
## Model 1: restricted model
## Model 2: lchnimp ~ lchempi + lgas + lrtwex + befile6 + affile6 + afdec6 + 
##     t
## 
##   Res.Df    RSS Df Sum of Sq      F Pr(>F)
## 1    129 41.709                           
## 2    123 40.638  6     1.071 0.5402 0.7767

The p-value indicates that the variables, except for time trend, are jointly statistically insignificant.

(iii)

model_iii <- lm(lchnimp ~ lchempi + lgas + lrtwex + befile6 + affile6 + afdec6 + t + feb + mar + apr + may + jun + jul + aug + sep + oct + nov + dec, data = barium)
summary(model_iii)
## 
## Call:
## lm(formula = lchnimp ~ lchempi + lgas + lrtwex + befile6 + affile6 + 
##     afdec6 + t + feb + mar + apr + may + jun + jul + aug + sep + 
##     oct + nov + dec, data = barium)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.86054 -0.36284  0.02233  0.37155  1.09845 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)   
## (Intercept) 27.300074  31.397067   0.870  0.38643   
## lchempi     -0.451656   1.271528  -0.355  0.72310   
## lgas        -0.820624   1.345056  -0.610  0.54303   
## lrtwex      -0.197141   0.529531  -0.372  0.71038   
## befile6      0.164851   0.256979   0.641  0.52251   
## affile6      0.153400   0.271986   0.564  0.57388   
## afdec6      -0.295016   0.299428  -0.985  0.32662   
## t            0.012339   0.003916   3.151  0.00209 **
## feb         -0.355415   0.293754  -1.210  0.22886   
## mar          0.062566   0.254858   0.245  0.80652   
## apr         -0.440615   0.258398  -1.705  0.09093 . 
## may          0.031299   0.259200   0.121  0.90410   
## jun         -0.200950   0.259213  -0.775  0.43984   
## jul          0.011111   0.268378   0.041  0.96705   
## aug         -0.127114   0.267792  -0.475  0.63594   
## sep         -0.075193   0.258350  -0.291  0.77155   
## oct          0.079763   0.257051   0.310  0.75691   
## nov         -0.260303   0.253062  -1.029  0.30588   
## dec          0.096533   0.261553   0.369  0.71277   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5788 on 112 degrees of freedom
## Multiple R-squared:  0.4106, Adjusted R-squared:  0.3158 
## F-statistic: 4.334 on 18 and 112 DF,  p-value: 6.188e-07
summary(model_i)$coefficients
##                Estimate   Std. Error    t value    Pr(>|t|)
## (Intercept) -2.36752571 20.782164848 -0.1139210 0.909486134
## lchempi     -0.68623641  1.239711188 -0.5535454 0.580894844
## lgas         0.46567857  0.876177882  0.5314886 0.596038777
## lrtwex       0.07822372  0.472440015  0.1655739 0.868764143
## befile6      0.09046996  0.251288689  0.3600240 0.719446617
## affile6      0.09700615  0.257313120  0.3769965 0.706825810
## afdec6      -0.35150180  0.282541716 -1.2440705 0.215839231
## t            0.01270583  0.003844281  3.3051245 0.001244189
summary(model_iii)$coefficients
##                Estimate  Std. Error     t value    Pr(>|t|)
## (Intercept) 27.30007415 31.39706688  0.86951034 0.386427675
## lchempi     -0.45165551  1.27152822 -0.35520683 0.723102699
## lgas        -0.82062398  1.34505551 -0.61010418 0.543028721
## lrtwex      -0.19714150  0.52953135 -0.37229429 0.710377272
## befile6      0.16485089  0.25697887  0.64149589 0.522511203
## affile6      0.15340038  0.27198562  0.56400179 0.573880563
## afdec6      -0.29501635  0.29942757 -0.98526782 0.326616221
## t            0.01233888  0.00391627  3.15067176 0.002089577
## feb         -0.35541477  0.29375401 -1.20990611 0.228862403
## mar          0.06256597  0.25485803  0.24549342 0.806523684
## apr         -0.44061491  0.25839800 -1.70517929 0.090933157
## may          0.03129904  0.25919977  0.12075258 0.904103374
## jun         -0.20095005  0.25921335 -0.77523032 0.439837302
## jul          0.01111147  0.26837771  0.04140237 0.967048838
## aug         -0.12711371  0.26779170 -0.47467383 0.635943720
## sep         -0.07519288  0.25835019 -0.29105022 0.771551210
## oct          0.07976266  0.25705140  0.31029851 0.756910639
## nov         -0.26030316  0.25306226 -1.02861310 0.305877817
## dec          0.09653259  0.26155252  0.36907535 0.712768370

Including the monthly dummies does not change any other estimates or their standard erroes in important ways.

C9

(i)

\(\beta_1\) should have a positive sign and \(\beta_2\) should have a negative sign.

(ii)

summary(lm(rsp500 ~ pcip + i3, data = volat))
## 
## Call:
## lm(formula = rsp500 ~ pcip + i3, data = volat)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -157.871  -22.580    2.103   25.524  138.137 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 18.84306    3.27488   5.754 1.44e-08 ***
## pcip         0.03642    0.12940   0.281   0.7785    
## i3          -1.36169    0.54072  -2.518   0.0121 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 40.13 on 554 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.01189,    Adjusted R-squared:  0.008325 
## F-statistic: 3.334 on 2 and 554 DF,  p-value: 0.03637
  • Intercept (18.84306): When both predictors (pcip and i3) are zero, the expected return on the S&P 500 (rsp500) is 18.84.

  • pcip (0.03642): For a 1-unit increase in the percentage change in industrial production (pcip), the return on the S&P 500 (rsp500) is expected to increase by 0.03642, holding i3 constant. The effect is very small and statistically insignificant.

  • i3 (-1.36169): For a 1% increase in the 3-month T-bill rate (i3), the return on the S&P 500 is expected to decrease by 1.36169, holding pcip constant. This effect is statistically significant.

(iii)

  • i3 is statistically significant (p-value = 0.0121), while pcip is not (p-value = 0.7785).

(iv)

No, the model has a very low R-squared (0.01189), indicating that the predictors explain only a tiny portion of the variation in the S&P 500 returns. The statistical significance of i3 suggests it has a small, but potentially useful, effect, but overall, the predictability of S&P 500 returns from these variables is weak.