# Load packages
# Core
library(tidyverse)
library(tidyquant)
# Source function
source("../Desktop/PSU_FIN3100_FinancialAnalytics/00_scripts/simulate_accumulation.R")
Revise the code below.
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
Revise the code for weights.
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AGG 0.25
## 2 EEM 0.25
## 3 EFA 0.2
## 4 IJS 0.2
## 5 SPY 0.1
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0204
## 2 2013-02-28 -0.00239
## 3 2013-03-28 0.0121
## 4 2013-04-30 0.0174
## 5 2013-05-31 -0.0128
## 6 2013-06-28 -0.0247
## 7 2013-07-31 0.0321
## 8 2013-08-30 -0.0224
## 9 2013-09-30 0.0511
## 10 2013-10-31 0.0301
## # ℹ 50 more rows
# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899136
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.02347491
No need
# Create a vector of 1s as a starting point
sims <- 51
starts <- rep(100, sims) %>%
set_names(paste0("sim", 1:sims))
starts
## sim1 sim2 sim3 sim4 sim5 sim6 sim7 sim8 sim9 sim10 sim11 sim12 sim13
## 100 100 100 100 100 100 100 100 100 100 100 100 100
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26
## 100 100 100 100 100 100 100 100 100 100 100 100 100
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39
## 100 100 100 100 100 100 100 100 100 100 100 100 100
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51
## 100 100 100 100 100 100 100 100 100 100 100 100
set.seed(1234)
# Simulate
monte_carlo_sim_51 <- starts %>%
# Simulate
map_dfc(.x = .,
.f = ~simulate_accumulation(initial_value = .x,
N = 240,
mean_return = mean_port_return,
sd_return = stddev_port_return)) %>%
# Add the column, month
mutate(month = (1:nrow(.))) %>%
select(month, everything()) %>%
# Transform to long form
pivot_longer(cols = -month, names_to = "sim", values_to = "growth")
monte_carlo_sim_51
## # A tibble: 24,582 × 3
## month sim growth
## <int> <chr> <dbl>
## 1 1 returns...1 100
## 2 1 growth...2 100
## 3 1 returns...3 100
## 4 1 growth...4 100
## 5 1 returns...5 100
## 6 1 growth...6 100
## 7 1 returns...7 100
## 8 1 growth...8 100
## 9 1 returns...9 100
## 10 1 growth...10 100
## # ℹ 24,572 more rows
# Find quantiles
monte_carlo_sim_51 %>%
group_by(sim) %>%
summarise(growth = last(growth)) %>%
ungroup() %>%
pull(growth) %>%
# Find the quantiles
quantile(probs = c(0,0.25, 0.5, 0.75, 1)) %>%
round(2)
## 0% 25% 50% 75% 100%
## 0.96 1.01 90.81 417.64 738.34
monte_carlo_sim_51 %>%
ggplot(aes(x = month, y = growth, col = sim)) +
geom_line() +
theme(legend.position = "none")
# Simplify the plot
sim_summary <- monte_carlo_sim_51 %>%
group_by(sim) %>%
summarise(growth = last(growth)) %>%
ungroup() %>%
summarise(max = max(growth),
median = median(growth),
min = min(growth))
sim_summary
## # A tibble: 1 × 3
## max median min
## <dbl> <dbl> <dbl>
## 1 738. 90.8 0.957
monte_carlo_sim_51 %>%
group_by(sim) %>%
filter(last(growth) == sim_summary$max |
last(growth) == sim_summary$median |
last(growth) == sim_summary$min) %>%
# Plot
ggplot(aes(month, growth, col = sim)) +
geom_line() +
theme()
Line Plot of Simulations with Max, Median, and Min
Based on the Monte Carlo simulation results, how much should you expect from your $100 investment after 20 years? What is the best-case scenario? What is the worst-case scenario? What are limitations of this simulation analysis?
You should expect anywhere between $750 and $0 as returns. The best case scenario was at $750 at year 20, and the worst case dropped to $0 less than a year in and continued being at $0 until year 20. This simulation is limited because we can not determine a single path that the growth will follow, which makes it hard to say which of these outcomes you will receive.