# Load packages
# Core
library(tidyverse)
library(tidyquant)
# time series
library(timetk)
Simulate future portfolio returns
five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”
market: “SPY”
from 2012-12-31 to 2017-12-31
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AGG 0.25
## 2 EEM 0.25
## 3 EFA 0.2
## 4 IJS 0.2
## 5 SPY 0.1
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0204
## 2 2013-02-28 -0.00239
## 3 2013-03-28 0.0121
## 4 2013-04-30 0.0174
## 5 2013-05-31 -0.0128
## 6 2013-06-28 -0.0247
## 7 2013-07-31 0.0321
## 8 2013-08-30 -0.0224
## 9 2013-09-30 0.0511
## 10 2013-10-31 0.0301
## # ℹ 50 more rows
# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899133
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.02347491
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
## [1] 3.062685e-05 4.233574e-02 -4.398624e-03 2.264499e-02 -1.057662e-02
## [6] -4.696845e-03 -1.585848e-02 1.684246e-02 2.621087e-02 4.324203e-02
## [11] -1.676672e-02 5.785743e-02 2.579575e-02 2.476738e-02 -2.562261e-02
## [16] 4.017410e-02 -2.128887e-02 -3.924119e-02 -2.642693e-02 2.931042e-02
## [21] 2.298258e-02 3.649870e-02 -4.870266e-03 2.306966e-02 1.662744e-02
## [26] 1.607967e-03 2.296525e-02 -4.599065e-02 2.754170e-02 -2.042464e-02
## [31] 3.149570e-02 1.018121e-02 2.424727e-04 -2.108595e-02 -1.598634e-02
## [36] -2.159256e-02 1.639595e-02 6.750562e-03 3.932387e-02 -8.762017e-05
## [41] -4.013559e-03 -2.416861e-02 7.721519e-03 1.876680e-02 2.672358e-02
## [46] 3.012843e-02 1.633513e-02 1.034499e-02 5.844194e-02 5.659841e-03
## [51] -1.505889e-02 4.875720e-02 1.314665e-02 5.532185e-03 5.938856e-03
## [56] 7.113641e-03 1.270066e-02 2.507221e-02 -1.835060e-03 2.833785e-02
## [61] 6.677125e-02 -4.445966e-03 3.664436e-02 4.221553e-02 4.902183e-02
## [66] -3.187519e-02 5.509144e-02 -2.696073e-02 2.539710e-02 1.136307e-02
## [71] 5.948907e-03 -2.443244e-03 2.269710e-04 -6.546831e-03 3.839075e-02
## [76] 2.126654e-02 6.106340e-03 8.379518e-02 -1.133829e-03 -2.947433e-03
## [81] -1.107693e-02 1.293624e-02 -2.679458e-02 1.479834e-02 -3.791097e-02
## [86] 1.179340e-02 2.420060e-02 2.824006e-03 -5.139290e-02 3.339425e-02
## [91] -3.703838e-02 -2.334008e-02 3.950091e-02 -5.770043e-03 3.419852e-02
## [96] 3.047693e-02 -1.706679e-02 7.332404e-03 3.991807e-02 4.763534e-02
## [101] 1.136618e-02 1.506465e-02 1.258181e-02 -1.290352e-02 -2.912625e-03
## [106] 5.573545e-03 7.474927e-03 -1.849674e-02 1.280156e-02 2.827718e-02
## [111] 8.603772e-03 5.259132e-03 4.682342e-02 4.127334e-03 -1.906741e-02
## [116] 1.161834e-02 8.571648e-03 -3.491842e-02 2.200364e-02 -3.342574e-02
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 × 1
## returns
## <dbl>
## 1 1
## 2 1.00
## 3 1.04
## 4 0.996
## 5 1.02
## 6 0.989
## 7 0.995
## 8 0.984
## 9 1.02
## 10 1.03
## # ℹ 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
select(growth)
simulated_growth
## # A tibble: 121 × 1
## growth
## <dbl>
## 1 1
## 2 1.00
## 3 1.04
## 4 1.04
## 5 1.06
## 6 1.05
## 7 1.05
## 8 1.03
## 9 1.05
## 10 1.07
## # ℹ 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 11.13393
simulate_accumulation <- function(initial_value, N, mean_return, sd_return) {
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(initial_value, 1 + rnorm(N, mean_return, sd_return)))
# Calculate the cumative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
mutate(growth = accumulate(returns, function(x,y) x*y)) %>%
select(growth)
return(simulated_growth)
}
simulate_accumulation(initial_value = 100, N = 240, mean_return = 0.005, sd_return = 0.01) %>%
tail()
## # A tibble: 6 × 1
## growth
## <dbl>
## 1 371.
## 2 361.
## 3 361.
## 4 371.
## 5 371.
## 6 373.
# Create a vector of 1s as a starting point
sims <- 51
starts <- rep(1,sims) %>%
set_names(paste0("sin", 1:sims))
# simulate
monte_carlo_sim_51 <- starts %>%
# simulate
map_dfc(.x = .,
.f = ~simulate_accumulation(initial_value = .x,
N = 120,
mean_return = mean_port_return,
sd_return = stddev_port_return)) %>%
# Add column month
mutate(month = 1:nrow(.)) %>%
select(month, everything()) %>%
# Rearrange column names
set_names(c("month", names(starts))) %>%
# Transform into long form
pivot_longer(cols = -month, names_to = "sim", values_to = "growth")
monte_carlo_sim_51
## # A tibble: 6,171 × 3
## month sim growth
## <int> <chr> <dbl>
## 1 1 sin1 1
## 2 1 sin2 1
## 3 1 sin3 1
## 4 1 sin4 1
## 5 1 sin5 1
## 6 1 sin6 1
## 7 1 sin7 1
## 8 1 sin8 1
## 9 1 sin9 1
## 10 1 sin10 1
## # ℹ 6,161 more rows
# find quantiles
monte_carlo_sim_51 %>%
group_by(sim) %>%
summarise(growth = last(growth)) %>%
pull(growth) %>%
quantile(probs = c(0, 0.25, 0.5, 0.75, 1)) %>%
round(2)
## 0% 25% 50% 75% 100%
## 1.06 1.63 1.89 2.19 3.75
monte_carlo_sim_51 %>%
ggplot(aes(x = month, y = growth, color = sim)) +
geom_line() +
theme(legend.position = "none") +
theme(plot.title = element_text(hjust = 0.5)) +
labs(title = "Simulating growth of $1 over 120 months")
# step 1 summarize data into max, median and min of last value
sim_summary <- monte_carlo_sim_51 %>%
group_by(sim) %>%
summarise(growth = last(growth)) %>%
ungroup() %>%
summarise(max = max(growth),
median = median(growth),
min = min(growth))
sim_summary
## # A tibble: 1 × 3
## max median min
## <dbl> <dbl> <dbl>
## 1 3.75 1.89 1.06
# Step 2 plot
monte_carlo_sim_51 %>%
# Filter for max, median and min sim
group_by(sim) %>%
filter(last(growth) == sim_summary$max |
last(growth) == sim_summary$median |
last(growth) == sim_summary$min) %>%
ungroup() %>%
# plot
ggplot(aes(x = month, y = growth, color = sim)) +
geom_line() +
theme(legend.position = "none") +
theme(plot.title = element_text(hjust = 0.5)) +
theme(plot.subtitle = element_text(hjust = 0.5))
labs(title = "Simulating growth of $1 over 120 months",
subtitle = "Max, Median and Minimum")
## $title
## [1] "Simulating growth of $1 over 120 months"
##
## $subtitle
## [1] "Max, Median and Minimum"
##
## attr(,"class")
## [1] "labels"