# Load packages
# Core
library(tidyverse)
library(tidyquant)
# Source Function
source("../00_scripts/simulate_accumulation.R")
Revise the code below.
symbols <- c("PLTR", "IBM", "BLK", "TSM", "SLB")
prices <- tq_get(x = symbols,
get = "stock.prices",
fro = "2012-12-31",
to = "2024-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
Revise the code for weights.
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "BLK" "IBM" "PLTR" "SLB" "TSM"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 BLK 0.25
## 2 IBM 0.25
## 3 PLTR 0.2
## 4 SLB 0.2
## 5 TSM 0.1
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 144 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0751
## 2 2013-02-28 0.00501
## 3 2013-03-28 0.0203
## 4 2013-04-30 0.00545
## 5 2013-05-31 0.0135
## 6 2013-06-28 -0.0452
## 7 2013-07-31 0.0489
## 8 2013-08-30 -0.0367
## 9 2013-09-30 0.0336
## 10 2013-10-31 0.0382
## # ℹ 134 more rows
# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.008996955
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.06245171
No need
sims <- 51
starts <- rep(100, sims) %>%
set_names(paste0("sim", 1:sims))
starts
## sim1 sim2 sim3 sim4 sim5 sim6 sim7 sim8 sim9 sim10 sim11 sim12 sim13
## 100 100 100 100 100 100 100 100 100 100 100 100 100
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26
## 100 100 100 100 100 100 100 100 100 100 100 100 100
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39
## 100 100 100 100 100 100 100 100 100 100 100 100 100
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51
## 100 100 100 100 100 100 100 100 100 100 100 100
set.seed(1234)
monte_carlo_sim_51 <- starts %>%
map_dfc(.x = .,
.f = ~simulate_accumulation(initial_value = .x,
N = 240,
mean_return = mean_port_return,
sd_return = stddev_port_return)) %>%
mutate(month = 1:nrow(.)) %>%
select(month, everything())%>%
set_names(c("month", names(starts))) %>%
pivot_longer(cols = -month, names_to = "sim", values_to = "growth")
monte_carlo_sim_51
## # A tibble: 12,291 × 3
## month sim growth
## <int> <chr> <dbl>
## 1 1 sim1 100
## 2 1 sim2 100
## 3 1 sim3 100
## 4 1 sim4 100
## 5 1 sim5 100
## 6 1 sim6 100
## 7 1 sim7 100
## 8 1 sim8 100
## 9 1 sim9 100
## 10 1 sim10 100
## # ℹ 12,281 more rows
monte_carlo_sim_51 %>%
group_by(sim) %>%
summarise(growth = last(growth)) %>%
ungroup() %>%
pull(growth) %>%
quantile(probs = c(0, 0.25, 0.5, 0.75, 1)) %>%
round(2)
## 0% 25% 50% 75% 100%
## 72.34 368.49 723.87 1277.95 3036.02
Line Plot of Simulations with Max, Median, and Min
sim_summary <- monte_carlo_sim_51 %>%
group_by(sim) %>%
summarise(growth = last(growth)) %>%
ungroup() %>%
summarise(max = max(growth),
median = median(growth),
min = min(growth))
sim_summary
## # A tibble: 1 × 3
## max median min
## <dbl> <dbl> <dbl>
## 1 3036. 724. 72.3
monte_carlo_sim_51 %>%
group_by(sim) %>%
filter(last(growth) == sim_summary$max |
last(growth) == sim_summary$median |
last(growth) == sim_summary$min) %>%
ungroup() %>%
ggplot(aes(x = month, y = growth, color = sim)) +
geom_line() +
theme(legend.position = "none") +
theme(plot.title = element_text(hjust = 0.5)) +
theme(plot.subtitle = element_text(hjust = 0.5)) +
labs(title = "Simulating growth of $1 over 240 months",
subtitle = "Maximum, Median, and Minimum Simulation")
Based on the Monte Carlo simulation results, how much should you expect from your $100 investment after 20 years? What is the best-case scenario? What is the worst-case scenario? What are limitations of this simulation analysis?
Over the next 20 years I can expect this portfolio to grow to about $500. Best case scenario I can expect to receive $3000. Worst case scenario, I can expect to receive little to nothing in return. One limitation in this case is the fact that we used normal distributions of return. In reality, returns are typically negatively skewed, meaning these returns are more optimistic than expected. Another limitation would be the lack of historical knowledge. while we have a solid grasp of data to go off, some of these companies were public before 2012, meaning there is more data that we could interpret to provide a good understanding of expected returns in certain market scenarios.