# Load packages

# Core
library(tidyverse)
library(tidyquant)

# Source function
# source("../Downloads/CodeAlong13_Ch11_shell.Rmd")

1 Import stock prices

Revise the code below.

symbols <- c("AAPL", "MSFT", "INTC", "GOOG", "NVDA")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

Revise the code for weights.

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "GOOG" "INTC" "MSFT" "NVDA"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AAPL       0.25
## 2 GOOG       0.25
## 3 INTC       0.2 
## 4 MSFT       0.2 
## 5 NVDA       0.1

4 Build a portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 60 × 2
##    date       returns
##    <date>       <dbl>
##  1 2013-01-31 -0.0129
##  2 2013-02-28  0.0168
##  3 2013-03-28  0.0146
##  4 2013-04-30  0.0641
##  5 2013-05-31  0.0414
##  6 2013-06-28 -0.0344
##  7 2013-07-31  0.0142
##  8 2013-08-30  0.0119
##  9 2013-09-30  0.0160
## 10 2013-10-31  0.0867
## # ℹ 50 more rows

5 Simulating growth of a dollar

# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.02054497
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.04355608

6 Simulation function

simulate_accumulation <- function(initial_value, N, mean_return, sd_return) {
  
  # Add a dollar
  simulated_returns_add_1 <- tibble(returns = c(initial_value, 1 + rnorm(N, mean_return, sd_return)))
  
  # Calculate the cumulative growth of a dollar
  simulated_growth <- simulated_returns_add_1 %>%
    mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
    select(growth)
  
  return(simulated_growth)
}

simulate_accumulation(initial_value = 100, N = 240, mean_return = 0.05, sd_return = 0.01) %>%
  tail()
## # A tibble: 6 × 1
##      growth
##       <dbl>
## 1 10919590.
## 2 11681132.
## 3 12269415.
## 4 12639456.
## 5 13211020.
## 6 14060537.

7 Running multiple simulations

# Create a vector of 1s as a starting point
sims <- 51
starts <- rep(100, sims) %>%
  set_names (paste("sim", 1:sims))

starts
##  sim 1  sim 2  sim 3  sim 4  sim 5  sim 6  sim 7  sim 8  sim 9 sim 10 sim 11 
##    100    100    100    100    100    100    100    100    100    100    100 
## sim 12 sim 13 sim 14 sim 15 sim 16 sim 17 sim 18 sim 19 sim 20 sim 21 sim 22 
##    100    100    100    100    100    100    100    100    100    100    100 
## sim 23 sim 24 sim 25 sim 26 sim 27 sim 28 sim 29 sim 30 sim 31 sim 32 sim 33 
##    100    100    100    100    100    100    100    100    100    100    100 
## sim 34 sim 35 sim 36 sim 37 sim 38 sim 39 sim 40 sim 41 sim 42 sim 43 sim 44 
##    100    100    100    100    100    100    100    100    100    100    100 
## sim 45 sim 46 sim 47 sim 48 sim 49 sim 50 sim 51 
##    100    100    100    100    100    100    100
# Simulate
monte_carlo_sim_51 <- starts %>%
  
  # Simulate
  map_dfc(.x = .,
          .f = ~simulate_accumulation(initial_value = .x,
                                      N = 240,
                                      mean_return = mean_port_return,
                                      sd_return = stddev_port_return)) %>%

  # Add column month
  mutate (month = 1:nrow(.)) %>%
  select(month, everything()) %>%
  
  # Rearrange column names
  set_names(c("month", names (starts))) %>%

  # Transform to long form
  pivot_longer(cols = -month, names_to = "sim", values_to = "growth")
  
monte_carlo_sim_51
## # A tibble: 12,291 × 3
##    month sim    growth
##    <int> <chr>   <dbl>
##  1     1 sim 1     100
##  2     1 sim 2     100
##  3     1 sim 3     100
##  4     1 sim 4     100
##  5     1 sim 5     100
##  6     1 sim 6     100
##  7     1 sim 7     100
##  8     1 sim 8     100
##  9     1 sim 9     100
## 10     1 sim 10    100
## # ℹ 12,281 more rows
# Find quantiles
monte_carlo_sim_51 %>%
  
  group_by(sim) %>%
  summarise(growth = last(growth)) %>%
  ungroup() %>%
  pull(growth) %>%
  
  quantile(probs = c(0, 0.25, 0.5, 0.75, 1)) %>%
  round(2)
##       0%      25%      50%      75%     100% 
##  1807.33  4835.81  8099.68 15771.37 71000.22

8 Visualizing simulations with ggplot

Line Plot of Simulations with Max, Median, and Min

Line plot with max, median, and min

# Step 1: Summarize data into max, median, and min of last value
sim_summary <- monte_carlo_sim_51 %>%
  
  group_by(sim) %>%
  summarise(growth = last(growth)) %>%
  ungroup() %>%
  
  summarise(max = max(growth),
            median = median(growth),
            min = min(growth))

sim_summary
## # A tibble: 1 × 3
##      max median   min
##    <dbl>  <dbl> <dbl>
## 1 71000.  8100. 1807.
# Step 2: Plot
monte_carlo_sim_51 %>%
  
  # Filter for max, median, and min sim
  group_by(sim) %>%
  filter(last(growth) == sim_summary$max |
         last(growth) == sim_summary$median |
         last(growth) == sim_summary$min) %>%
  
  ungroup() %>%
  
  # Plot
  ggplot(aes(x = month, y = growth, color = sim)) +
  geom_line()+
  
  theme(legend.position = "none") +
  theme(plot.title = element_text(hjust = 0.5)) + 
  theme(plot.subtitle = element_text(hjust = 0.5)) +
  
  labs(title = "Simulating growth of $100 over 240 months",
       subtitle = "Maximum, Median, and Minimum Simulation")

Based on the Monte Carlo simulation results, how much should you expect from your $100 investment after 20 years? What is the best-case scenario? What is the worst-case scenario? What are limitations of this simulation analysis?