Table 1 by baseline fluctuation status


No
(N=86)
Yes
(N=92)
Overall
(N=178)
Baseline age
Mean (SD) 70.4 (6.42) 70.2 (6.55) 70.3 (6.47)
Median [Min, Max] 71.0 [55.0, 83.0] 69.0 [57.0, 89.0] 70.0 [55.0, 89.0]
Missing 15 (17.4%) 8 (8.7%) 23 (12.9%)
Gender
1 62 (72.1%) 74 (80.4%) 136 (76.4%)
2 9 (10.5%) 10 (10.9%) 19 (10.7%)
Missing 15 (17.4%) 8 (8.7%) 23 (12.9%)
Baseline MoCA
Mean (SD) 21.5 (4.71) 18.4 (5.93) 19.8 (5.61)
Median [Min, Max] 21.0 [11.0, 30.0] 19.0 [6.00, 30.0] 21.0 [6.00, 30.0]
Missing 19 (22.1%) 9 (9.8%) 28 (15.7%)
Baseline UPDRS score
Mean (SD) 27.8 (16.0) 30.5 (16.1) 29.3 (16.0)
Median [Min, Max] 26.0 [0, 73.0] 29.0 [2.00, 80.0] 27.5 [0, 80.0]
Missing 19 (22.1%) 11 (12.0%) 30 (16.9%)
Baseline CDR score
Mean (SD) 4.17 (2.50) 5.85 (3.04) 5.09 (2.92)
Median [Min, Max] 3.50 [1.00, 12.0] 4.50 [1.00, 13.0] 4.00 [1.00, 13.0]
Missing 45 (52.3%) 42 (45.7%) 87 (48.9%)
apoe
APOEe4- 44 (51.2%) 45 (48.9%) 89 (50.0%)
APOEe4+ 19 (22.1%) 36 (39.1%) 55 (30.9%)
Missing 23 (26.7%) 11 (12.0%) 34 (19.1%)




Cross-sectional relationships at each timepoint


UPDRS scores vs. Fluctuation status


## 
##  Welch Two Sample t-test
## 
## data:  dlbc$updrs_base by dlbc$fluc_base
## t = -1.0284, df = 141.25, p-value = 0.3055
## alternative hypothesis: true difference in means between group No and group Yes is not equal to 0
## 95 percent confidence interval:
##  -7.949400  2.508825
## sample estimates:
##  mean in group No mean in group Yes 
##          27.76119          30.48148
## 
##  Welch Two Sample t-test
## 
## data:  dlbc$updrs_m12 by dlbc$fluc_m12
## t = -0.61146, df = 53.053, p-value = 0.5435
## alternative hypothesis: true difference in means between group No and group Yes is not equal to 0
## 95 percent confidence interval:
##  -10.90161   5.80762
## sample estimates:
##  mean in group No mean in group Yes 
##          28.82143          31.36842
## 
##  Welch Two Sample t-test
## 
## data:  dlbc$updrs_m24 by dlbc$fluc_m24
## t = -2.0433, df = 28.663, p-value = 0.05031
## alternative hypothesis: true difference in means between group No and group Yes is not equal to 0
## 95 percent confidence interval:
##  -24.12083778   0.01726636
## sample estimates:
##  mean in group No mean in group Yes 
##          25.06250          37.11429
## 
##  Welch Two Sample t-test
## 
## data:  dlbc$updrs_m36 by dlbc$fluc_m36
## t = -2.2591, df = 23.991, p-value = 0.03324
## alternative hypothesis: true difference in means between group No and group Yes is not equal to 0
## 95 percent confidence interval:
##  -28.262507  -1.275954
## sample estimates:
##  mean in group No mean in group Yes 
##          24.76923          39.53846



MoCA scores vs. Fluctuation status


## 
##  Welch Two Sample t-test
## 
## data:  dlbc$moca_base by dlbc$fluc_base
## t = 3.5319, df = 147.97, p-value = 0.0005505
## alternative hypothesis: true difference in means between group No and group Yes is not equal to 0
## 95 percent confidence interval:
##  1.351430 4.784516
## sample estimates:
##  mean in group No mean in group Yes 
##          21.47761          18.40964
## 
##  Welch Two Sample t-test
## 
## data:  dlbc$moca_m12 by dlbc$fluc_m12
## t = 1.5602, df = 52.86, p-value = 0.1247
## alternative hypothesis: true difference in means between group No and group Yes is not equal to 0
## 95 percent confidence interval:
##  -0.6784699  5.4284699
## sample estimates:
##  mean in group No mean in group Yes 
##          20.17857          17.80357
## 
##  Welch Two Sample t-test
## 
## data:  dlbc$moca_m24 by dlbc$fluc_m24
## t = 1.5331, df = 33.354, p-value = 0.1347
## alternative hypothesis: true difference in means between group No and group Yes is not equal to 0
## 95 percent confidence interval:
##  -1.098709  7.828548
## sample estimates:
##  mean in group No mean in group Yes 
##          19.68750          16.32258
## 
##  Welch Two Sample t-test
## 
## data:  dlbc$moca_m36 by dlbc$fluc_m36
## t = 1.0004, df = 20.034, p-value = 0.3291
## alternative hypothesis: true difference in means between group No and group Yes is not equal to 0
## 95 percent confidence interval:
##  -3.186568  9.060694
## sample estimates:
##  mean in group No mean in group Yes 
##          19.84615          16.90909


CDR vs. Fluctuation status


## 
##  Welch Two Sample t-test
## 
## data:  dlbc$cdr_base by dlbc$fluc_base
## t = -2.8911, df = 88.997, p-value = 0.004823
## alternative hypothesis: true difference in means between group No and group Yes is not equal to 0
## 95 percent confidence interval:
##  -2.8333765 -0.5251601
## sample estimates:
##  mean in group No mean in group Yes 
##          4.170732          5.850000
## 
##  Welch Two Sample t-test
## 
## data:  dlbc$cdr_m12 by dlbc$fluc_m12
## t = -1.0775, df = 25.817, p-value = 0.2912
## alternative hypothesis: true difference in means between group No and group Yes is not equal to 0
## 95 percent confidence interval:
##  -3.1249961  0.9759577
## sample estimates:
##  mean in group No mean in group Yes 
##          5.156250          6.230769
## 
##  Welch Two Sample t-test
## 
## data:  dlbc$cdr_m24 by dlbc$fluc_m24
## t = -3.3085, df = 29.073, p-value = 0.002506
## alternative hypothesis: true difference in means between group No and group Yes is not equal to 0
## 95 percent confidence interval:
##  -5.798238 -1.368429
## sample estimates:
##  mean in group No mean in group Yes 
##          3.583333          7.166667
## 
##  Welch Two Sample t-test
## 
## data:  dlbc$cdr_m36 by dlbc$fluc_m36
## t = -2.2259, df = 12.895, p-value = 0.04449
## alternative hypothesis: true difference in means between group No and group Yes is not equal to 0
## 95 percent confidence interval:
##  -7.8853677 -0.1146323
## sample estimates:
##  mean in group No mean in group Yes 
##                 5                 9




Longitudinal relationships by baseline fluctuation status

## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 401 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 401 rows containing missing values or values outside the scale range
## (`geom_point()`).

## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 410 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 410 rows containing missing values or values outside the scale range
## (`geom_point()`).

## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 513 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 513 rows containing missing values or values outside the scale range
## (`geom_point()`).



Measuring consistency



## # A tibble: 10 × 5
## # Groups:   fluc_base, fluc_m12, fluc_m24 [6]
##    fluc_base fluc_m12 fluc_m24 fluc_m36     n
##    <chr>     <chr>    <chr>    <chr>    <int>
##  1 No        No       No       No           1
##  2 No        No       No       Yes          3
##  3 No        No       Yes      No           2
##  4 No        Yes      Yes      No           4
##  5 No        Yes      Yes      Yes          4
##  6 Yes       No       No       No           2
##  7 Yes       No       No       Yes          1
##  8 Yes       Yes      No       No           1
##  9 Yes       Yes      Yes      No           2
## 10 Yes       Yes      Yes      Yes          5
## # A tibble: 35 × 4
##    fluc_base fluc_m12 fluc_m24 fluc_m36
##    <chr>     <chr>    <chr>    <chr>   
##  1 <NA>      Yes      No       No      
##  2 Yes       Yes      Yes      <NA>    
##  3 No        No       No       <NA>    
##  4 Yes       Yes      No       No      
##  5 <NA>      <NA>     <NA>     <NA>    
##  6 No        Yes      No       <NA>    
##  7 Yes       Yes      Yes      No      
##  8 Yes       No       No       No      
##  9 <NA>      Yes      <NA>     <NA>    
## 10 No        Yes      Yes      Yes     
## # ℹ 25 more rows
Overall
(N=203)
Group
Consistent no 17 (8.4%)
Consistent yes 50 (24.6%)
Improvement 15 (7.4%)
Inconsistent 12 (5.9%)
Progression 21 (10.3%)
Missing 88 (43.3%)
Overall
(N=115)
Group
Consistent no 17 (14.8%)
Consistent yes 50 (43.5%)
Improvement 15 (13.0%)
Inconsistent 12 (10.4%)
Progression 21 (18.3%)




Spaghetti plots for people who “progressed”





Spaghetti plots for people who “improved”






Spaghetti plots for consistent yes




Modeling


Cross-sectional models at baseline



  CDR MoCA UPDRS
Predictors Estimates CI p Estimates CI p Estimates CI p
(Intercept) -2.68 -9.03 – 3.68 0.405 28.95 19.31 – 38.59 <0.001 12.02 -16.10 – 40.14 0.399
fluc_baseYes 2.04 0.86 – 3.22 0.001 -2.52 -4.39 – -0.65 0.009 2.74 -2.70 – 8.19 0.321
Baseline age 0.09 -0.00 – 0.18 0.051 -0.10 -0.24 – 0.03 0.141 0.21 -0.19 – 0.61 0.305
Gender: GENDER2 0.78 -0.97 – 2.54 0.378 -1.07 -3.82 – 1.68 0.443 2.00 -5.86 – 9.85 0.616
apoeAPOEe4+ 0.15 -1.04 – 1.35 0.798 -1.03 -2.94 – 0.87 0.285 0.06 -5.47 – 5.59 0.983
Observations 87 133 134
R2 / R2 adjusted 0.174 / 0.134 0.088 / 0.059 0.018 / -0.013


Longitudinal models





  CDR MoCA UPDRS
Predictors Estimates CI p Estimates CI p Estimates CI p
(Intercept) -5.11 -11.92 – 1.69 0.140 32.96 22.26 – 43.65 <0.001 5.32 -24.64 – 35.27 0.727
time 1.43 1.01 – 1.85 <0.001 -2.07 -2.67 – -1.47 <0.001 3.11 1.54 – 4.69 <0.001
fluc_base: Yes 2.85 1.22 – 4.48 0.001 -3.46 -5.96 – -0.96 0.007 1.79 -5.03 – 8.62 0.605
Baseline age 0.10 0.01 – 0.20 0.038 -0.13 -0.28 – 0.02 0.097 0.26 -0.16 – 0.69 0.220
Gender: GENDER2 0.70 -1.20 – 2.60 0.471 -1.74 -4.79 – 1.32 0.264 3.22 -5.20 – 11.65 0.452
apoeAPOEe4+ 0.46 -0.81 – 1.74 0.474 -0.92 -3.02 – 1.19 0.392 0.29 -5.57 – 6.15 0.923
time:fluc_baseYes -0.64 -1.24 – -0.04 0.038 0.82 -0.03 – 1.67 0.058 0.20 -1.98 – 2.37 0.859
Random Effects
σ2 3.26 9.55 66.65
τ00 6.71 DLBC_ID 29.45 DLBC_ID 240.73 DLBC_ID
ICC 0.67 0.76 0.78
N 88 DLBC_ID 133 DLBC_ID 136 DLBC_ID
Observations 195 284 296
Marginal R2 / Conditional R2 0.182 / 0.732 0.108 / 0.782 0.046 / 0.793