library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
data <- read.csv("~/Google Drive/My Drive/YEAR 2/PROJECTS/DEREK/Tipping points/Pilot/tippingpoint_pilotdata.csv") %>%
slice(-c(1:2)) %>%
filter(attn_check == 2) %>%
mutate(pass = ifelse((Condition == "man" & mani_check == 1), 1,
ifelse((Condition == "woman" & mani_check == 2), 2, NA))) %>%
filter(!is.na(pass)) %>%
filter(reflect_1 == 1)
# Make a DF for each tipping point
data_analysis_1 <- data %>%
mutate(tipping_point = ifelse(neutral_1 == 1, 1, 0)) %>%
filter(tipping_point == 1)
data_analysis_2 <- data %>%
mutate(tipping_point = ifelse((neutral_2 == 1 & neutral_1 == 2), 2, 0)) %>%
filter(tipping_point == 2)
data_analysis_3 <- data %>%
mutate(tipping_point = ifelse((neutral_3 == 1 & neutral_2 == 2 & neutral_1 == 2), 3, 0)) %>%
filter(tipping_point == 3)
data_analysis_4 <- data %>%
mutate(tipping_point = ifelse((neutral_4 == 1 & neutral_3 == 2 & neutral_2 == 2 & neutral_1 == 2), 4, 0)) %>%
filter(tipping_point == 4)
data_analysis_5 <- data %>%
mutate(tipping_point = ifelse((neutral_5 == 1 & neutral_4 == 2 & neutral_3 == 2 & neutral_2 == 2 & neutral_1 == 2), 5, 0)) %>%
filter(tipping_point == 5)
data_analysis_6 <- data %>%
mutate(tipping_point = ifelse((neutral_6 == 1 & neutral_5 == 2 & neutral_4 == 2 & neutral_3 == 2 & neutral_2 == 2 & neutral_1 == 2), 6, 0)) %>%
filter(tipping_point == 6)
data_analysis_7 <- data %>%
mutate(tipping_point = ifelse((neutral_7 == 1 & neutral_6 == 2 & neutral_5 == 2 & neutral_4 == 2 & neutral_3 == 2 & neutral_2 == 2 & neutral_1 == 2), 7, 0)) %>%
filter(tipping_point == 7)
data_analysis_8 <- data %>%
mutate(tipping_point = ifelse((neutral_8 == 1 & neutral_7 == 2 & neutral_6 == 2 & neutral_5 == 2 & neutral_4 == 2 & neutral_3 == 2 & neutral_2 == 2 & neutral_1 == 2), 8, 0)) %>%
filter(tipping_point == 8)
data_analysis_9 <- data %>%
mutate(tipping_point = ifelse((neutral_9 == 1 & neutral_8 == 2 & neutral_7 == 2 & neutral_6 == 2 & neutral_5 == 2 & neutral_4 == 2 & neutral_3 == 2 & neutral_2 == 2 & neutral_1 == 2), 9, 0)) %>%
filter(tipping_point == 9)
data_analysis_10 <- data %>%
mutate(tipping_point = ifelse((neutral_10 == 1 & neutral_9 == 2 & neutral_8 == 2 & neutral_7 == 2 & neutral_6 == 2 & neutral_5 == 2 & neutral_4 == 2 & neutral_3 == 2 & neutral_2 == 2 & neutral_1 == 2), 10, 0)) %>%
filter(tipping_point == 10)
data_analysis_never <- data %>%
mutate(tipping_point = ifelse((neutral_10 == 2 & neutral_9 == 2 & neutral_8 == 2 & neutral_7 == 2 & neutral_6 == 2 & neutral_5 == 2 & neutral_4 == 2 & neutral_3 == 2 & neutral_2 == 2 & neutral_1 == 2), 11, NA)) %>%
filter(tipping_point == 11)
data_full <- data_analysis_1 %>%
rbind(data_analysis_2, data_analysis_3, data_analysis_4, data_analysis_5, data_analysis_6, data_analysis_7, data_analysis_8, data_analysis_9, data_analysis_10, data_analysis_never)
Condition assignment = gender of the deviant (man / woman)
table(data_full$Condition, data_full$tipping_point)
##
## 1 2 3 4 5 6 7 8 9 10 11
## man 15 8 30 15 11 3 2 1 1 2 9
## woman 7 6 24 15 11 4 7 1 0 3 15
11 means that the participants never indicated a tip
ggplot(data = data_full,
aes(x = Condition, y = tipping_point)) +
geom_point(alpha = 0.1,
size = 2,
position = position_jitter(0.1)) +
stat_summary(fun.data = "mean_cl_boot",
size = 1,
geom = "linerange",
color = "grey50")+
stat_summary(fun = "mean",
size = 0.3)+
theme_bw()
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning: Removed 2 rows containing missing values or values outside the scale range
## (`geom_segment()`).
t.test(tipping_point ~ Condition, data = data_full, var.equal = F)
##
## Welch Two Sample t-test
##
## data: tipping_point by Condition
## t = -2.3142, df = 184.13, p-value = 0.02176
## alternative hypothesis: true difference in means between group man and group woman is not equal to 0
## 95 percent confidence interval:
## -1.8856033 -0.1500912
## sample estimates:
## mean in group man mean in group woman
## 4.164948 5.182796
Looks like the tipping point for women deviants is higher: it takes more evidence to be convinced that the norm has changed based on a woman’s behavior
data_full$perceived_type_numeric = as.numeric(data_full$perceived_type)
mean(data_full$perceived_type_numeric)
## [1] 4.631579
Self interest is slightly more male-typed
On the scale: 1 = Strongly associated with women, 4 = equally associated with men and women, 7 = Strongly associated with men
Would want to measure this in a pilot where there is no manipulation though.
# Fit model
model <- data_full %>%
filter(gender == 1 | gender == 2) %>%
lm(tipping_point ~ Condition * gender, .)
# Display model summary
summary(model)
##
## Call:
## lm(formula = tipping_point ~ Condition * gender, data = .)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6744 -1.9200 -0.9200 0.7111 7.0800
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.9200 0.4263 9.194 <2e-16 ***
## Conditionwoman 1.7544 0.6270 2.798 0.0057 **
## gender2 0.3689 0.6195 0.595 0.5523
## Conditionwoman:gender2 -1.2135 0.8880 -1.367 0.1734
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.015 on 181 degrees of freedom
## Multiple R-squared: 0.04591, Adjusted R-squared: 0.0301
## F-statistic: 2.903 on 3 and 181 DF, p-value: 0.03624
Doesn’t seem like there’s an interaction.
library(pwr)
library(rstatix)
##
## Attaching package: 'rstatix'
## The following object is masked from 'package:stats':
##
## filter
data_full %>%
cohens_d(tipping_point ~ Condition, var.equal = F)
## # A tibble: 1 × 7
## .y. group1 group2 effsize n1 n2 magnitude
## * <chr> <chr> <chr> <dbl> <int> <int> <ord>
## 1 tipping_point man woman -0.336 97 93 small
pwr.t.test(d = .33, sig.level = 0.05, power = 0.8)
##
## Two-sample t test power calculation
##
## n = 145.1147
## d = 0.33
## sig.level = 0.05
## power = 0.8
## alternative = two.sided
##
## NOTE: n is number in *each* group
Need a sample of 300. We had 200 here.