#LOAD PACKAGE
library(stats)  #berisi fungsi analisis statistika umum
library(readxl) #untuk membaca data dari file (.xls dan .xlsx)
library(readr)  #untuk baca data dalam bentuk (.csv)
library(car)    #Analisis lanjutan
## Loading required package: carData
library(agricolae)
## Warning: package 'agricolae' was built under R version 4.3.3
library(tidyr)
#INPUT DATA
datakuis<- read_excel("D:\\AGH 25\\RAK-DATA 1-Kuis.xlsx", sheet=2) #BENTUK UMUM
head(datakuis) #Menampilkan 6 data teratas
## # A tibble: 4 × 7
##   Kelompok    K0    K1    K2    K3    K4    K5
##      <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1        1  27.7  36.6  37.4  42.2  39.8  42.9
## 2        2  33    33.8  41.2  46    39.5  45.9
## 3        3  26.3  27    45.4  45.4  40.9  43.9
## 4        4  37.7  39    44.6  46.2  44    45.6
str(datakuis)
## tibble [4 × 7] (S3: tbl_df/tbl/data.frame)
##  $ Kelompok: num [1:4] 1 2 3 4
##  $ K0      : num [1:4] 27.7 33 26.3 37.7
##  $ K1      : num [1:4] 36.6 33.8 27 39
##  $ K2      : num [1:4] 37.4 41.2 45.4 44.6
##  $ K3      : num [1:4] 42.2 46 45.4 46.2
##  $ K4      : num [1:4] 39.8 39.5 40.9 44
##  $ K5      : num [1:4] 42.9 45.9 43.9 45.6
datakuis$Kelompok <- as.factor(datakuis$Kelompok)
str(datakuis)
## tibble [4 × 7] (S3: tbl_df/tbl/data.frame)
##  $ Kelompok: Factor w/ 4 levels "1","2","3","4": 1 2 3 4
##  $ K0      : num [1:4] 27.7 33 26.3 37.7
##  $ K1      : num [1:4] 36.6 33.8 27 39
##  $ K2      : num [1:4] 37.4 41.2 45.4 44.6
##  $ K3      : num [1:4] 42.2 46 45.4 46.2
##  $ K4      : num [1:4] 39.8 39.5 40.9 44
##  $ K5      : num [1:4] 42.9 45.9 43.9 45.6
RAK12 <- pivot_longer(datakuis,
                       cols=c("K0","K1","K2","K3","K4","K5"),
                      names_to ="Perlakuan", 
                       values_to = "Hasil")
head(RAK12)
## # A tibble: 6 × 3
##   Kelompok Perlakuan Hasil
##   <fct>    <chr>     <dbl>
## 1 1        K0         27.7
## 2 1        K1         36.6
## 3 1        K2         37.4
## 4 1        K3         42.2
## 5 1        K4         39.8
## 6 1        K5         42.9
#Analisis Anova RAKL
hasil_anova <- aov(Hasil ~ Perlakuan + Kelompok, data = RAK12)
summary(hasil_anova)
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## Perlakuan    5  652.7  130.55  14.491 2.75e-05 ***
## Kelompok     3   96.6   32.20   3.574   0.0395 *  
## Residuals   15  135.1    9.01                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Uji lanjut jika signifikan
hasil_ujilanjut <- HSD.test(hasil_anova, "Perlakuan", group = TRUE)
print(hasil_ujilanjut)
## $statistics
##   MSerror Df     Mean       CV      MSD
##     9.009 15 39.66667 7.566806 6.895547
## 
## $parameters
##    test    name.t ntr StudentizedRange alpha
##   Tukey Perlakuan   6         4.594735  0.05
## 
## $means
##     Hasil      std r      se  Min  Max    Q25   Q50    Q75
## K0 31.175 5.220073 4 1.50075 26.3 37.7 27.350 30.35 34.175
## K1 34.100 5.188449 4 1.50075 27.0 39.0 32.100 35.20 37.200
## K2 42.150 3.652853 4 1.50075 37.4 45.4 40.250 42.90 44.800
## K3 44.950 1.864582 4 1.50075 42.2 46.2 44.600 45.70 46.050
## K4 41.050 2.056696 4 1.50075 39.5 44.0 39.725 40.35 41.675
## K5 44.575 1.422146 4 1.50075 42.9 45.9 43.650 44.75 45.675
## 
## $comparison
## NULL
## 
## $groups
##     Hasil groups
## K3 44.950      a
## K5 44.575      a
## K2 42.150      a
## K4 41.050      a
## K1 34.100      b
## K0 31.175      b
## 
## attr(,"class")
## [1] "group"