# Load packages

# Core
library(tidyverse)
library(tidyquant)

# Source function
source("../00_scripts/simulate_accumulation.R")

1 Import stock prices

Revise the code below.

symbols <- c("MSFT", "AAPL", "F", "JPM", "SBUX")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

Revise the code for weights.

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "F"    "JPM"  "MSFT" "SBUX"
# weights
weights <- c(0.3, 0.2, 0.2, 0.15, 0.15)
weights
## [1] 0.30 0.20 0.20 0.15 0.15
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 Ă— 2
##   symbols weights
##   <chr>     <dbl>
## 1 AAPL       0.3 
## 2 F          0.2 
## 3 JPM        0.2 
## 4 MSFT       0.15
## 5 SBUX       0.15

4 Build a portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 144 Ă— 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31 -0.0194 
##  2 2013-02-28 -0.00494
##  3 2013-03-28  0.0131 
##  4 2013-04-30  0.0479 
##  5 2013-05-31  0.0716 
##  6 2013-06-28 -0.0432 
##  7 2013-07-31  0.0710 
##  8 2013-08-30  0.00322
##  9 2013-09-30  0.0188 
## 10 2013-10-31  0.0495 
## # ℹ 134 more rows

5 Simulating growth of a dollar

# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.01376893
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.05429857

6 Simulation function

No need

7 Running multiple simulations

# Create a vector of its as a starting point
sims <- 51
starts <- rep(1, sims) %>%
    set_names(paste0("sims", 1:sims))

starts
##  sims1  sims2  sims3  sims4  sims5  sims6  sims7  sims8  sims9 sims10 sims11 
##      1      1      1      1      1      1      1      1      1      1      1 
## sims12 sims13 sims14 sims15 sims16 sims17 sims18 sims19 sims20 sims21 sims22 
##      1      1      1      1      1      1      1      1      1      1      1 
## sims23 sims24 sims25 sims26 sims27 sims28 sims29 sims30 sims31 sims32 sims33 
##      1      1      1      1      1      1      1      1      1      1      1 
## sims34 sims35 sims36 sims37 sims38 sims39 sims40 sims41 sims42 sims43 sims44 
##      1      1      1      1      1      1      1      1      1      1      1 
## sims45 sims46 sims47 sims48 sims49 sims50 sims51 
##      1      1      1      1      1      1      1
# Simulate
# for reproducable research
set.seed(1234)

monte_carlo_sims_51 <- starts %>%
    
    # Simulate
    map_dfc(.x = .,
            .f = ~simulate_accumulation(initial_value = .x,
                                        N             = 240,
                                        mean_return   = mean_port_return, 
                                        sd_return     = stddev_port_return)) %>%
    
    # Add column month
    mutate(month = 1:nrow(.)) %>%
    select(month, everything()) %>%
    
    # Rearrand column names
    set_names(c("month", names(starts))) %>%
    
    # Transform to long form
    pivot_longer(cols = -month, names_to = "sim", values_to = "growth")

monte_carlo_sims_51
## # A tibble: 12,291 Ă— 3
##    month sim    growth
##    <int> <chr>   <dbl>
##  1     1 sims1       1
##  2     1 sims2       1
##  3     1 sims3       1
##  4     1 sims4       1
##  5     1 sims5       1
##  6     1 sims6       1
##  7     1 sims7       1
##  8     1 sims8       1
##  9     1 sims9       1
## 10     1 sims10      1
## # ℹ 12,281 more rows
# Find quantiles
monte_carlo_sims_51 %>%
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    pull(growth) %>%
    
    quantile(probs = c(0, 0.25, 0.5, 0.75, 1)) %>%
    round(2)
##    0%   25%   50%   75%  100% 
##  3.31 13.53 23.95 39.74 84.00

8 Visualizing simulations with ggplot

Line Plot of Simulations with Max, Median, and Min

# Step 1 Summarize data into max, median, and min of last value

sim_summary <- monte_carlo_sims_51 %>%
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    
    summarise(max    = max(growth),
              median = median(growth),
              min    = min(growth))
    
sim_summary
## # A tibble: 1 Ă— 3
##     max median   min
##   <dbl>  <dbl> <dbl>
## 1  84.0   24.0  3.31
# Step 2 Plot
monte_carlo_sims_51 %>%
    
    # Fitler for max, median, and min sim
    group_by(sim) %>%
    filter(last(growth) == sim_summary$max | 
               last(growth) == sim_summary$median |
               last(growth) == sim_summary$min) %>%
    
    ungroup() %>%
    
    # Plot
    ggplot(aes(x = month, y = growth, color = sim)) +
    geom_line() +
    theme(legend.position = "none") +
    theme(plot.title = element_text(hjust = 0.5)) +
    theme(plot.subtitle = element_text(hjust = 0.5)) +
    
    labs(title = "Simulating growth of $1 over 240 months",
         subtitle = "Maximum, Median, and Minimum Simulation")

Based on the Monte Carlo simulation results, how much should you expect from your $100 investment after 20 years? What is the best-case scenario? What is the worst-case scenario? What are limitations of this simulation analysis?

Based on the simulation, a 100 investment could grow to about 22.5 in 20 years in the median case, up to 64 in the best case, or stay at 100 in the worst case. However, this assumes consistent growth and doesn’t account for inflation, taxes, fees, or unexpected market changes, which can affect real outcomes.