Min. 1st Qu. Median Mean 3rd Qu. Max.
3.483 16.736 25.995 38.781 41.999 620.045
False ZIP codes
^0367 22871 50796 53384 5529q 5800z 75178 86258
1 1 1 1 1 1 1 1
Min. 1st Qu. Median Mean 3rd Qu. Max.
3.483 16.736 25.995 38.781 41.999 620.045
False ZIP codes
^0367 22871 50796 53384 5529q 5800z 75178 86258
1 1 1 1 1 1 1 1
uhh dce_version equity arm block radius
uhh NA 0.1582742 0.9522441 0.9036941 0.8244050 0.6992272
dce_version 0.1582742 NA 0.9216243 0.6110162 0.3981631 0.7214132
equity 0.9522441 0.9216243 NA 0.0887270 0.3849386 0.9151574
arm 0.9036941 0.6110162 0.0887270 NA 0.8505247 0.7054125
block 0.8244050 0.3981631 0.3849386 0.8505247 NA 0.5163854
radius 0.6992272 0.7214132 0.9151574 0.7054125 0.5163854 NA
order 0.2123454 0.3063986 0.9649185 0.3131897 0.7166377 0.4265649
order
uhh 0.2123454
dce_version 0.3063986
equity 0.9649185
arm 0.3131897
block 0.7166377
radius 0.4265649
order NA
# A tibble: 7 × 3
educ n percentage
<fct> <int> <dbl>
1 Mittlere Reife (Realschulabschluss) 202 35.9
2 Hochschulabschluss (Universität, FH) 174 30.9
3 Abitur 126 22.4
4 Hauptschulabschluss 48 8.53
5 Sonstiges 7 1.24
6 Von der Schule abgegangen ohne Schulabschluss 5 0.888
7 Will ich nicht beantworten 1 0.178
Accessed Infos on Costs
1
66
Accessed Infos on Property
1
80
Private Forest Owner?
1 2 3 4
40 516 4 3
Forest Yes and Size
FALSE TRUE
537 26
Forest Yes and Use
FALSE TRUE
538 25
Forest Size in ha
0 1 2 3 4 5 7 8 10 12 20 40 50 90 200 1200
1 5 5 1 1 2 1 1 2 1 1 1 1 1 1 1
Forest Use in m3
0 1 2 5 8 10 20 26 40 90 120 190 1500 2500
8 2 3 1 1 1 3 1 1 1 1 1 1 1
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 3.167 3.833 3.755 4.500 5.000
Choices scope low
1 2
1567 1392
Choices scope_high
1 2
1736 1245
DCE Version
Choices 1 2 3 4
1 701 792 801 826
2 699 628 599 584
DCE Version
HNV Attributes 1 2 3 4
100 286 285 0 0
200 283 285 284 279
300 278 285 0 0
400 0 0 270 284
500 275 282 0 0
600 0 0 276 284
800 278 283 0 0
1000 0 0 285 282
1600 0 0 285 281
DCE Version
PA Attributes 1 2 3 4
100 279 282 0 0
200 281 294 278 280
300 284 274 0 0
400 0 0 288 282
500 282 290 0 0
600 0 0 280 282
800 274 280 0 0
1000 0 0 275 283
1600 0 0 279 283
DCE Version
Cost Attributes 1 2 3 4
5 147 142 135 142
10 146 143 142 147
20 144 139 144 139
40 146 141 139 138
60 138 141 141 137
80 132 144 138 142
120 131 144 140 141
150 139 143 143 138
200 136 139 137 141
250 141 144 141 145
DCE Version
HNV Visible Dummy 1 2 3 4
0 705 713 704 704
1 695 707 696 706
DCE Version
Pa Full Dummy 1 2 3 4
0 938 950 935 934
1 462 470 465 476
DCE Version
Pa Full Dummy 1 2 3 4
0 928 941 928 939
1 472 479 472 471
200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1600 1800 2000
5 11 23 47 25 59 22 55 21 57 23 33 23 22 32 23 30
10 12 25 46 22 61 23 59 24 59 23 32 22 23 33 24 34
20 12 24 46 22 55 23 61 21 58 19 35 23 22 33 22 33
40 12 23 44 21 56 27 60 23 57 22 30 21 23 34 22 34
60 10 23 46 22 55 24 55 24 57 21 31 21 20 32 24 35
80 10 23 42 22 56 21 55 24 57 22 33 20 24 35 23 33
120 11 22 45 22 53 23 57 21 56 22 34 21 24 35 21 34
150 10 24 47 22 55 22 60 23 57 21 33 23 21 33 21 36
200 10 25 45 20 54 24 50 23 53 22 37 22 24 33 20 36
250 11 23 46 23 56 22 55 23 59 22 35 23 19 34 23 36
2200 2600 3200
5 22 26 12
10 24 19 13
20 22 23 12
40 22 23 10
60 24 22 11
80 23 22 11
120 19 24 12
150 24 21 10
200 24 22 9
250 25 24 12
arm
equity 5 10 20 indefinitely
All same 0.4618421 0.4525641 0.4344828 0.4287671
income tax 0.4307692 0.4687500 0.4646341 0.4179104
\[ \begin{equation} U = \beta_{NC} \cdot \text{NC} + \beta_{NC_{sq}} \cdot \text{NC}^2 +\beta_{C} \cdot C + \beta_{Y} \cdot Y + \epsilon \label{mxl_base2} \end{equation} \]
with: \(NC = \{\text{PA}_{a}, \text{HNV}_{v}\}\) and \(a=\{1, 2, 3\}\) and \(v=\{1, 2\}\)
\[ \begin{equation} U = \beta_{NC} \cdot \text{NC} + \beta_{C} \cdot C + \beta_{Y} \cdot Y + \epsilon \label{linear_model} \end{equation} \]
\[ \begin{equation} U = \beta_{NC} \cdot \log(\text{NC}) + \beta_{C} \cdot C + \beta_{Y} \cdot Y + \epsilon \label{log_nc_model} \end{equation} \]
\[ \begin{equation} U = \beta_{NC} \cdot \frac{\text{NC}^\lambda - 1}{\lambda} + \beta_{C} \cdot C + \beta_{Y} \cdot Y + \epsilon \quad \text{for } \lambda \neq 0 \label{box_cox_model} \end{equation} \]
\[ \begin{equation} U = \beta_{NC} \cdot \text{NC} + \beta_{NC_{log}} \cdot \log(\text{NC}) + \beta_{C} \cdot C + \beta_{Y} \cdot Y + \epsilon \label{log_linear_model} \end{equation} \]
Estimate | s.e. | t.rat.(0) | Rob.s.e. | Rob.t.rat.(0) | |
beta_pa | 4.47 | 1.87 | 2.39 | 2.48 | 1.80 |
beta_hnv | 5.48 | 1.54 | 3.55 | 2.19 | 2.50 |
beta_pa_sq | -0.01 | 0.01 | -1.90 | 0.01 | -1.30 |
beta_hnv_sq | -0.01 | 0.005 | -1.42 | 0.01 | -0.79 |
pa_half_access | 8.47 | 2.16 | 3.92 | 2.62 | 3.23 |
pa_full_access | 5.46 | 2.02 | 2.71 | 2.58 | 2.11 |
pa_half_access_sq | -0.03 | 0.01 | -3.64 | 0.01 | -2.81 |
pa_full_access_sq | -0.02 | 0.01 | -2.32 | 0.01 | -1.75 |
hnv_visible | 6.19 | 1.64 | 3.76 | 2.15 | 2.89 |
hnv_visible_sq | -0.01 | 0.01 | -1.70 | 0.01 | -1.12 |
beta_cost | -0.01 | 0.0005 | -16.33 | 0.001 | -11.45 |
ASC_sq | -20.88 | 8.37 | -2.49 | 14.27 | -1.46 |
Estimate | s.e. | t.rat.(0) | Rob.s.e. | Rob.t.rat.(0) | |
beta_pa | 91.58 | 41.04 | 2.23 | 58.28 | 1.57 |
beta_hnv | 151.11 | 50.54 | 2.99 | 96.00 | 1.57 |
pa_half_access | 162.98 | 42.02 | 3.88 | 65.34 | 2.49 |
pa_full_access | 134.35 | 41.96 | 3.20 | 63.68 | 2.11 |
hnv_visible | 164.64 | 55.16 | 2.98 | 87.46 | 1.88 |
beta_cost | -0.01 | 0.0005 | -16.28 | 0.001 | -11.44 |
ASC_sq | -27.19 | 6.84 | -3.97 | 13.43 | -2.02 |
Estimate | s.e. | t.rat.(0) | Rob.s.e. | Rob.t.rat.(0) | |
beta_pa | 1.58 | 1.19 | 1.32 | 1.42 | 1.11 |
beta_hnv | 3.95 | 1.10 | 3.58 | 1.26 | 3.14 |
pa_half_access | 2.27 | 1.36 | 1.67 | 1.33 | 1.71 |
pa_full_access | 1.59 | 1.30 | 1.23 | 1.45 | 1.10 |
hnv_visible | 4.23 | 1.21 | 3.51 | 1.29 | 3.28 |
beta_cost | -0.01 | 0.0005 | -16.23 | 0.001 | -11.36 |
ASC_sq | -22.62 | 8.39 | -2.70 | 14.33 | -1.58 |
Estimate | s.e. | t.rat.(0) | Rob.s.e. | Rob.t.rat.(0) | |
beta_pa | 22.21 | 37.71 | 0.59 | 47.28 | 0.47 |
beta_hnv | 22.32 | 20.81 | 1.07 | 30.64 | 0.73 |
pa_half_access | 135.73 | 127.26 | 1.07 | 190.58 | 0.71 |
pa_full_access | 376.79 | 552.50 | 0.68 | 992.44 | 0.38 |
hnv_visible | 24.38 | 26.05 | 0.94 | 34.33 | 0.71 |
beta_cost | -0.01 | 0.0005 | -16.44 | 0.001 | -11.66 |
ASC_sq | -18.09 | 8.06 | -2.24 | 13.98 | -1.29 |
lambda_pa | 0.43 | 0.48 | 0.90 | 0.57 | 0.74 |
lambda_hnv | 0.61 | 0.23 | 2.69 | 0.31 | 1.94 |
lambda_pa_half | 0.04 | 0.32 | 0.13 | 0.44 | 0.09 |
lambda_pa_full | -0.37 | 0.56 | -0.66 | 0.97 | -0.38 |
lambda_hnv_vis | 0.60 | 0.26 | 2.27 | 0.33 | 1.82 |
Estimate | s.e. | t.rat.(0) | Rob.s.e. | Rob.t.rat.(0) | |
beta_pa | 0.66 | 1.49 | 0.44 | 1.88 | 0.35 |
beta_hnv | 2.96 | 1.46 | 2.02 | 2.16 | 1.37 |
beta_pa_sq | 60.50 | 52.07 | 1.16 | 70.50 | 0.86 |
beta_hnv_sq | 70.81 | 68.41 | 1.04 | 130.31 | 0.54 |
pa_half_access | -0.91 | 1.69 | -0.54 | 1.93 | -0.47 |
pa_full_access | -1.08 | 1.64 | -0.66 | 2.00 | -0.54 |
pa_half_access_sq | 169.25 | 53.24 | 3.18 | 82.09 | 2.06 |
pa_full_access_sq | 152.09 | 54.33 | 2.80 | 78.98 | 1.93 |
hnv_visible | 2.90 | 1.67 | 1.73 | 2.12 | 1.37 |
hnv_visible_sq | 93.38 | 78.50 | 1.19 | 120.12 | 0.78 |
beta_cost | -0.01 | 0.0005 | -16.35 | 0.001 | -11.57 |
ASC_sq | -20.25 | 8.38 | -2.42 | 14.34 | -1.41 |
Estimate | s.e. | t.rat.(0) | Rob.s.e. | Rob.t.rat.(0) | |
beta_pa | 31.929 | 3.377 | 9.454 | 1.537 | 20.774 |
beta_hnv | 24.244 | 3.445 | 7.037 | 1.640 | 14.787 |
beta_pa_sq | -0.399 | 0.110 | -3.640 | 0.052 | -7.625 |
beta_hnv_sq | -0.056 | 0.106 | -0.525 | 0.037 | -1.510 |
pa_half_access | 6.864 | 3.127 | 2.195 | 1.532 | 4.480 |
pa_full_access | 1.063 | 0.322 | 3.301 | 0.178 | 5.977 |
hnv_visible | 1.163 | 2.100 | 0.554 | 0.859 | 1.355 |
beta_cost | -3.395 | 0.168 | -20.172 | 0.171 | -19.810 |
ASC_sq | -27.274 | 1.995 | -13.668 | 1.010 | -26.999 |
sig_pa | -11.753 | 1.457 | -8.064 | 0.586 | -20.071 |
sig_hnv | 6.739 | 0.924 | 7.297 | 0.272 | 24.755 |
sig_pa_sq | -1.139 | 0.053 | -21.566 | 0.014 | -79.033 |
sig_hnv_sq | 1.131 | 0.060 | 18.753 | 0.016 | 69.024 |
sig_pa_half_access | 26.670 | 3.071 | 8.685 | 1.173 | 22.746 |
sig_pa_full_access | 1.949 | 0.211 | 9.259 | 0.083 | 23.493 |
sig_hnv_visible | -1.906 | 2.520 | -0.756 | 0.557 | -3.419 |
sig_cost | -2.236 | 0.285 | -7.847 | 0.287 | -7.780 |
sig_ASC_sq | 145.214 | 2.490 | 58.309 | 1.116 | 130.113 |
Estimate | s.e. | t.rat.(0) | Rob.s.e. | Rob.t.rat.(0) | |
beta_pa | 9.104 | 3.580 | 2.543 | 1.656 | 5.498 |
beta_hnv | 18.771 | 1.301 | 14.425 | 0.358 | 52.368 |
beta_pa_sq | -0.480 | 0.132 | -3.626 | 0.058 | -8.217 |
beta_hnv_sq | -0.194 | 0.065 | -2.980 | 0.018 | -11.028 |
pa_half_access | 31.573 | 2.096 | 15.064 | 0.629 | 50.167 |
pa_full_access | 20.210 | 1.708 | 11.830 | 0.579 | 34.931 |
hnv_visible | 12.824 | 1.935 | 6.629 | 0.566 | 22.674 |
pa_half_access_sq | -1.346 | 0.129 | -10.441 | 0.042 | -31.991 |
pa_full_access_sq | -0.581 | 0.065 | -8.907 | 0.015 | -38.032 |
hnv_visible_sq | -0.117 | 0.072 | -1.623 | 0.017 | -6.756 |
beta_cost | -3.225 | 0.167 | -19.357 | 0.173 | -18.664 |
ASC_sq | -55.299 | 1.203 | -45.951 | 0.266 | -207.907 |
beta_radius | -0.477 | 0.118 | -4.057 | 0.028 | -16.856 |
sig_pa | 0.573 | 1.102 | 0.520 | 0.305 | 1.880 |
sig_hnv | -4.983 | 0.809 | -6.163 | 0.196 | -25.388 |
sig_pa_sq | 0.014 | 0.047 | 0.293 | 0.010 | 1.435 |
sig_hnv_sq | -0.161 | 0.035 | -4.559 | 0.009 | -17.362 |
sig_pa_half_access | -9.192 | 0.797 | -11.530 | 0.196 | -46.786 |
sig_pa_full_access | -5.601 | 1.059 | -5.287 | 0.176 | -31.840 |
sig_hnv_visible | 6.890 | 0.845 | 8.156 | 0.187 | 36.763 |
sig_pa_half_access_sq | -0.137 | 0.052 | -2.630 | 0.009 | -15.572 |
sig_pa_full_access_sq | -0.212 | 0.042 | -5.030 | 0.008 | -26.957 |
sig_hnv_visible_sq | -0.541 | 0.062 | -8.727 | 0.014 | -38.365 |
sig_cost | -2.650 | 0.287 | -9.242 | 0.287 | -9.250 |
sig_ASC_sq | 127.898 | 1.072 | 119.311 | 0.269 | 476.186 |
sig_radius | -8.285 | 0.119 | -69.725 | 0.030 | -275.148 |
Model | AIC | BIC | LLout |
---|---|---|---|
Quadratic Utility Function | 5523 | 5599.23 | -2749.5 |
Log Utility Function | 5527.5 | 5571.97 | -2756.75 |
Linear Utility Function | 5543.48 | 5587.95 | -2764.74 |
Box Cox Utility Function | 5528 | 5604.23 | -2752 |
Log-Linear Utility Function | 5530.87 | 5607.1 | -2753.43 |
Plot WTP function for HNV.
Plot WTP for 100ha increase in HNV for all German counties. (based on MXL estimates)
Plot WTP function for PA.
Plot WTP for 100ha increase in Protected Areas for all German counties. (based on MXL estimates)
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.00 5.75 30.00 101.47 100.00 5000.00 191
Difference all visits and favourite visits
0 1 2 3 4 5 6 7 8 9 10 11 12 15 16 17 18 20 21 22
128 12 9 7 4 5 1 5 2 1 7 1 6 5 2 3 2 6 1 1
25 27 28 30 40 45 46 49 50 55 60 61 70 90 92 95 100 104 145 150
3 1 1 2 4 1 1 1 2 1 4 1 1 1 2 1 1 2 1 2
200 240 346
1 1 1
[1] 30
[1] 5
Comments
Choice Behaviour
General Comments