The variability determines the the effect size. For each variability the effect size, f, will change.
\[f = d\sqrt{\frac{1}{2k}}\]
sigma <- 3.5
range <- 2
d <- range/sigma
library(pwr)
pwr.anova.test(k=4,n=NULL,f=d*sqrt(1/(2*4)),sig.level=0.05,power=0.8)
##
## Balanced one-way analysis of variance power calculation
##
## k = 4
## n = 67.76303
## f = 0.2020305
## sig.level = 0.05
## power = 0.8
##
## NOTE: n is number in each group
\[f = \frac{d}{2}\sqrt{\frac{k+1}{3(k-1)}}\]
pwr.anova.test(k=4,n=NULL,f=(d/2)*sqrt(5/(3*3)),sig.level=0.05,power=0.8)
##
## Balanced one-way analysis of variance power calculation
##
## k = 4
## n = 61.08609
## f = 0.2129589
## sig.level = 0.05
## power = 0.8
##
## NOTE: n is number in each group
\[(Even\:Number\:of\:Observations)\:f = \frac{d}{2}\]
pwr.anova.test(k=4,n=NULL,f=d/2,sig.level=0.05,power=0.8)
##
## Balanced one-way analysis of variance power calculation
##
## k = 4
## n = 34.38178
## f = 0.2857143
## sig.level = 0.05
## power = 0.8
##
## NOTE: n is number in each group
As the variability increased, the number of samples required decreased from 68 samples required at minimum variability to 35 samples required at maximum variability.