library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
mountain_data <-readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-09-22/members.csv')
## Rows: 76519 Columns: 21
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (10): expedition_id, member_id, peak_id, peak_name, season, sex, citizen...
## dbl (5): year, age, highpoint_metres, death_height_metres, injury_height_me...
## lgl (6): hired, success, solo, oxygen_used, died, injured
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
mountain_data %>% glimpse()
## Rows: 76,519
## Columns: 21
## $ expedition_id <chr> "AMAD78301", "AMAD78301", "AMAD78301", "AMAD78301…
## $ member_id <chr> "AMAD78301-01", "AMAD78301-02", "AMAD78301-03", "…
## $ peak_id <chr> "AMAD", "AMAD", "AMAD", "AMAD", "AMAD", "AMAD", "…
## $ peak_name <chr> "Ama Dablam", "Ama Dablam", "Ama Dablam", "Ama Da…
## $ year <dbl> 1978, 1978, 1978, 1978, 1978, 1978, 1978, 1978, 1…
## $ season <chr> "Autumn", "Autumn", "Autumn", "Autumn", "Autumn",…
## $ sex <chr> "M", "M", "M", "M", "M", "M", "M", "M", "M", "M",…
## $ age <dbl> 40, 41, 27, 40, 34, 25, 41, 29, 35, 37, 23, 44, 2…
## $ citizenship <chr> "France", "France", "France", "France", "France",…
## $ expedition_role <chr> "Leader", "Deputy Leader", "Climber", "Exp Doctor…
## $ hired <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, …
## $ highpoint_metres <dbl> NA, 6000, NA, 6000, NA, 6000, 6000, 6000, NA, 681…
## $ success <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, …
## $ solo <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, …
## $ oxygen_used <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, …
## $ died <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, …
## $ death_cause <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…
## $ death_height_metres <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…
## $ injured <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, …
## $ injury_type <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…
## $ injury_height_metres <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…
I have a dataset called mountain_data that looks like this:
mountain_data %>% glimpse() Rows: 76,519 Columns: 21 $ expedition_id
“AMAD78301”, “AMAD78301”, “AMAD78301”, “AMAD78301”, “AMAD78301… $ member_id ”AMAD78301-01”, “AMAD78301-02”, “AMAD78301-03”, “AMAD78301-04”… $ peak_id “AMAD”, “AMAD”, “AMAD”, “AMAD”, “AMAD”, “AMAD”, “AMAD”, “AMAD”… $ peak_name “Ama Dablam”, “Ama Dablam”, “Ama Dablam”, “Ama Dablam”, “Ama D… $ year 1978, 1978, 1978, 1978, 1978, 1978, 1978, 1978, 1979, 1979, 19… $ season ”Autumn”, “Autumn”, “Autumn”, “Autumn”, “Autumn”, “Autumn”, “A… $ sex ”M”, “M”, “M”, “M”, “M”, “M”, “M”, “M”, “M”, “M”, “M”, “M”, “M… $ age 40, 41, 27, 40, 34, 25, 41, 29, 35, 37, 23, 44, 25, 28, 32, 42… $ citizenship ”France”, “France”, “France”, “France”, “France”, “France”, “F… $ expedition_role ”Leader”, “Deputy Leader”, “Climber”, “Exp Doctor”, “Climber”,… $ hired FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,… $ highpoint_metres NA, 6000, NA, 6000, NA, 6000, 6000, 6000, NA, 6814, 6814, NA, … $ success FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,… $ solo FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,… $ oxygen_used FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,… $ died FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,… $ death_cause NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… $ death_height_metres NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… $ injured FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,… $ injury_type NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… $ injury_height_metres NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
The goal is to help predict death for climbers
Please write R code to create a predictive model that predicts the probability of died.
Please update the code to use tidymodels instead of caret and to use the h2o model instead of glmnet.
# Load necessary libraries
library(tidyverse)
library(tidymodels)
## ── Attaching packages ────────────────────────────────────── tidymodels 1.2.0 ──
## ✔ broom 1.0.7 ✔ rsample 1.2.1
## ✔ dials 1.3.0 ✔ tune 1.2.1
## ✔ infer 1.0.7 ✔ workflows 1.1.4
## ✔ modeldata 1.4.0 ✔ workflowsets 1.1.0
## ✔ parsnip 1.2.1 ✔ yardstick 1.3.1
## ✔ recipes 1.0.10
## ── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ──
## ✖ scales::discard() masks purrr::discard()
## ✖ dplyr::filter() masks stats::filter()
## ✖ recipes::fixed() masks stringr::fixed()
## ✖ dplyr::lag() masks stats::lag()
## ✖ yardstick::spec() masks readr::spec()
## ✖ recipes::step() masks stats::step()
## • Learn how to get started at https://www.tidymodels.org/start/
library(h2o)
##
## ----------------------------------------------------------------------
##
## Your next step is to start H2O:
## > h2o.init()
##
## For H2O package documentation, ask for help:
## > ??h2o
##
## After starting H2O, you can use the Web UI at http://localhost:54321
## For more information visit https://docs.h2o.ai
##
## ----------------------------------------------------------------------
##
## Attaching package: 'h2o'
## The following objects are masked from 'package:lubridate':
##
## day, hour, month, week, year
## The following objects are masked from 'package:stats':
##
## cor, sd, var
## The following objects are masked from 'package:base':
##
## %*%, %in%, &&, ||, apply, as.factor, as.numeric, colnames,
## colnames<-, ifelse, is.character, is.factor, is.numeric, log,
## log10, log1p, log2, round, signif, trunc
# Start H2O cluster
h2o.init(nthreads = -1, max_mem_size = "2G")
##
## H2O is not running yet, starting it now...
##
## Note: In case of errors look at the following log files:
## C:\Users\bella\AppData\Local\Temp\RtmpG2JHBC\file5728163545c8/h2o_bella_started_from_r.out
## C:\Users\bella\AppData\Local\Temp\RtmpG2JHBC\file572878a734b4/h2o_bella_started_from_r.err
##
##
## Starting H2O JVM and connecting: Connection successful!
##
## R is connected to the H2O cluster:
## H2O cluster uptime: 4 seconds 400 milliseconds
## H2O cluster timezone: America/New_York
## H2O data parsing timezone: UTC
## H2O cluster version: 3.44.0.3
## H2O cluster version age: 11 months and 13 days
## H2O cluster name: H2O_started_from_R_bella_gxu699
## H2O cluster total nodes: 1
## H2O cluster total memory: 1.98 GB
## H2O cluster total cores: 8
## H2O cluster allowed cores: 8
## H2O cluster healthy: TRUE
## H2O Connection ip: localhost
## H2O Connection port: 54321
## H2O Connection proxy: NA
## H2O Internal Security: FALSE
## R Version: R version 4.3.3 (2024-02-29 ucrt)
## Warning in h2o.clusterInfo():
## Your H2O cluster version is (11 months and 13 days) old. There may be a newer version available.
## Please download and install the latest version from: https://h2o-release.s3.amazonaws.com/h2o/latest_stable.html
# Clean and preprocess the data
mountain_data_clean <- mountain_data %>%
filter(!is.na(died)) %>%
mutate(across(c(sex, season, citizenship, expedition_role), as.factor)) %>%
select(-c(expedition_id, member_id, peak_id, peak_name, death_cause, injury_type))
# Split data into training and test sets
set.seed(123)
train_test_split <- initial_split(mountain_data_clean, prop = 0.8)
train_data <- training(train_test_split)
test_data <- testing(train_test_split)
# Convert to H2O frames for model building
train_h2o <- as.h2o(train_data)
## | | | 0% | |======================================================================| 100%
test_h2o <- as.h2o(test_data)
## | | | 0% | |======================================================================| 100%
# Define the response and predictor variables
response <- "died"
predictors <- c("age", "sex", "expedition_role", "season", "highpoint_metres", "oxygen_used")
# Build the H2O logistic regression model
model_h2o <- h2o.glm(
x = predictors,
y = response,
training_frame = train_h2o,
family = "binomial",
lambda = 0.01, # Regularization parameter
alpha = 0.5, # Elastic net mixing parameter
nfolds = 5, # Cross-validation for model tuning
seed = 123
)
## | | | 0% | |==== | 5% | |======================================================================| 100%
# View model summary
summary(model_h2o)
## Model Details:
## ==============
##
## H2OBinomialModel: glm
## Model Key: GLM_model_R_1733276571791_1
## GLM Model: summary
## family link regularization
## 1 binomial logit Elastic Net (alpha = 0.5, lambda = 0.01 )
## number_of_predictors_total number_of_active_predictors number_of_iterations
## 1 472 0 1
## training_frame
## 1 train_data_sid_9f9d_1
##
## H2OBinomialMetrics: glm
## ** Reported on training data. **
##
## MSE: 0.01447027
## RMSE: 0.1202924
## LogLoss: 0.07656495
## Mean Per-Class Error: 0.5
## AUC: 0.5
## AUCPR: 0.01468594
## Gini: 0
## R^2: 2.806644e-13
## Residual Deviance: 9373.847
## AIC: 9375.847
##
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
## FALSE TRUE Error Rate
## FALSE 0 60316 1.000000 =60316/60316
## TRUE 0 899 0.000000 =0/899
## Totals 0 61215 0.985314 =60316/61215
##
## Maximum Metrics: Maximum metrics at their respective thresholds
## metric threshold value idx
## 1 max f1 0.014686 0.028947 0
## 2 max f2 0.014686 0.069356 0
## 3 max f0point5 0.014686 0.018290 0
## 4 max accuracy 0.014686 0.014686 0
## 5 max precision 0.014686 0.014686 0
## 6 max recall 0.014686 1.000000 0
## 7 max specificity 0.014686 0.000000 0
## 8 max absolute_mcc 0.014686 0.000000 0
## 9 max min_per_class_accuracy 0.014686 0.000000 0
## 10 max mean_per_class_accuracy 0.014686 0.500000 0
## 11 max tns 0.014686 0.000000 0
## 12 max fns 0.014686 0.000000 0
## 13 max fps 0.014686 60316.000000 0
## 14 max tps 0.014686 899.000000 0
## 15 max tnr 0.014686 0.000000 0
## 16 max fnr 0.014686 0.000000 0
## 17 max fpr 0.014686 1.000000 0
## 18 max tpr 0.014686 1.000000 0
##
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
##
## H2OBinomialMetrics: glm
## ** Reported on cross-validation data. **
## ** 5-fold cross-validation on training data (Metrics computed for combined holdout predictions) **
##
## MSE: 0.01447075
## RMSE: 0.1202945
## LogLoss: 0.07658189
## Mean Per-Class Error: 0.5
## AUC: 0.4822629
## AUCPR: 0.01399675
## Gini: -0.03547413
## R^2: -3.376918e-05
## Residual Deviance: 9375.921
## AIC: 9377.921
##
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
## FALSE TRUE Error Rate
## FALSE 0 60316 1.000000 =60316/60316
## TRUE 0 899 0.000000 =0/899
## Totals 0 61215 0.985314 =60316/61215
##
## Maximum Metrics: Maximum metrics at their respective thresholds
## metric threshold value idx
## 1 max f1 0.014325 0.028947 4
## 2 max f2 0.014325 0.069356 4
## 3 max f0point5 0.014325 0.018290 4
## 4 max accuracy 0.014972 0.790640 0
## 5 max precision 0.014325 0.014686 4
## 6 max recall 0.014325 1.000000 4
## 7 max specificity 0.014972 0.799672 0
## 8 max absolute_mcc 0.014791 0.007193 2
## 9 max min_per_class_accuracy 0.014791 0.402265 2
## 10 max mean_per_class_accuracy 0.014325 0.500000 4
## 11 max tns 0.014972 48233.000000 0
## 12 max fns 0.014972 733.000000 0
## 13 max fps 0.014325 60316.000000 4
## 14 max tps 0.014325 899.000000 4
## 15 max tnr 0.014972 0.799672 0
## 16 max fnr 0.014972 0.815350 0
## 17 max fpr 0.014325 1.000000 4
## 18 max tpr 0.014325 1.000000 4
##
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
## Cross-Validation Metrics Summary:
## mean sd cv_1_valid cv_2_valid cv_3_valid
## accuracy 0.014683 0.001042 0.013552 0.016145 0.015339
## auc 0.500000 0.000000 0.500000 0.500000 0.500000
## err 0.985317 0.001042 0.986448 0.983855 0.984661
## err_count 12063.200000 89.429860 12083.000000 12066.000000 12197.000000
## f0point5 0.018286 0.001293 0.016883 0.020100 0.019100
## cv_4_valid cv_5_valid
## accuracy 0.014261 0.014117
## auc 0.500000 0.500000
## err 0.985739 0.985883
## err_count 11958.000000 12012.000000
## f0point5 0.017763 0.017584
##
## ---
## mean sd cv_1_valid cv_2_valid cv_3_valid
## precision 0.014683 0.001042 0.013552 0.016145 0.015339
## r2 -0.000092 0.000083 -0.000151 -0.000209 -0.000044
## recall 1.000000 0.000000 1.000000 1.000000 1.000000
## residual_deviance 1875.184100 115.709530 1759.472300 2029.507800 1965.042500
## rmse 0.120223 0.004182 0.115631 0.126046 0.122899
## specificity 0.000000 0.000000 0.000000 0.000000 0.000000
## cv_4_valid cv_5_valid
## precision 0.014261 0.014117
## r2 -0.000020 -0.000036
## recall 1.000000 1.000000
## residual_deviance 1814.336800 1807.561300
## rmse 0.118566 0.117975
## specificity 0.000000 0.000000
##
## Scoring History:
## timestamp duration iterations negative_log_likelihood objective
## 1 2024-12-03 20:43:11 0.000 sec 0 4686.92330 0.07656
## 2 2024-12-03 20:43:11 0.049 sec 1 4686.92330 0.07656
## training_rmse training_logloss training_r2 training_auc training_pr_auc
## 1 NA NA NA NA NA
## 2 0.12029 0.07656 0.00000 0.50000 0.01469
## training_lift training_classification_error
## 1 NA NA
## 2 1.00000 0.98531
##
## Variable Importances: (Extract with `h2o.varimp`)
## =================================================
##
## Variable Importances:
## variable relative_importance scaled_importance
## 1 expedition_role.2nd BC Manager 0.000000 NA
## 2 expedition_role.2nd Deputy Leader 0.000000 NA
## 3 expedition_role.2nd Exp Doctor 0.000000 NA
## 4 expedition_role.ABC Cook 0.000000 NA
## 5 expedition_role.ABC Manager 0.000000 NA
## percentage
## 1 NA
## 2 NA
## 3 NA
## 4 NA
## 5 NA
##
## ---
## variable relative_importance scaled_importance percentage
## 467 sex.F 0.000000 NA NA
## 468 sex.M 0.000000 NA NA
## 469 oxygen_used.FALSE 0.000000 NA NA
## 470 oxygen_used.TRUE 0.000000 NA NA
## 471 age 0.000000 NA NA
## 472 highpoint_metres 0.000000 NA NA
# Make predictions on the test data
predictions <- h2o.predict(model_h2o, test_h2o)
## | | | 0% | |======================================================================| 100%
## Warning in doTryCatch(return(expr), name, parentenv, handler): Test/Validation
## dataset column 'expedition_role' has levels not trained on: ["2nd Sirdar", "ABC
## Staff", "Asst BC Manager", "BC Manager & Cook", "BC Manager (C1 only)", "C2
## Cook", "Camp Manager", "Chief Coach", "Climb Ldr (torchbearer 2)", "Climb Ldr
## (torchbearer 3)", ...43 not listed..., "Sirder", "Staff", "Staff Member",
## "Staff Writer", "Storekeeper", "Survey Party Leader", "TV Producer", "Team
## Historian", "Transport Manager", "Treasurer"]
# Extract predicted probabilities
pred_prob <- as.vector(predictions$predict)
# Convert predictions to binary class based on threshold of 0.5
pred_class <- ifelse(pred_prob > 0.5, 1, 0)
# Evaluate the model using ROC and AUC
perf <- h2o.performance(model_h2o, newdata = test_h2o)
auc_value <- h2o.auc(perf)
print(paste("AUC value: ", auc_value)) # AUC value
## [1] "AUC value: 0.5"
# Create a confusion matrix
conf_matrix <- as.data.frame(h2o.confusionMatrix(model_h2o, test_h2o))
print(conf_matrix)
## FALSE TRUE Error Rate
## FALSE 0 15097 1.0000000 =15097/15097
## TRUE 0 207 0.0000000 =0/207
## Totals 0 15304 0.9864741 =15097/15304
# Shutdown H2O after usage
h2o.shutdown(prompt = FALSE)