The presidential election fell in the middle of my last semester of college, Fall 2024, and I was fortunate enough to take Dr. Ken Blake’s election analytics class. This page is a compilation of coding projects I worked on during the course.
Experts recommend spending no more than 30 percent of your gross monthly income on rent, but many renters in Rutherford County are exceeding that recommendation. The graph below shows the proportion of renters by Tennessee House District, that are spending more than 30 percent of their total household income on rent.
| Estimate by district | ||||
| District | Estimate | Estimate_MOE | From | To |
|---|---|---|---|---|
| State House District 13 (2022), Tennessee | 42.9 | 7.7 | 35.2 | 50.6 |
| State House District 37 (2022), Tennessee | 40.3 | 5.5 | 34.8 | 45.8 |
| State House District 34 (2022), Tennessee | 35.9 | 4.8 | 31.1 | 40.7 |
| State House District 49 (2022), Tennessee | 35.7 | 5.6 | 30.1 | 41.3 |
| State House District 48 (2022), Tennessee | 34.4 | 5.9 | 28.5 | 40.3 |
# Installing and loading required packages
if (!require("tidyverse"))
install.packages("tidyverse")
if (!require("tidycensus"))
install.packages("tidycensus")
if (!require("sf"))
install.packages("sf")
if (!require("mapview"))
install.packages("mapview")
if (!require("gtExtras"))
install.packages("gtExtras")
library(tidyverse)
library(tidycensus)
library(sf)
library(mapview)
library(gtExtras)
# Transmitting API key
census_api_key("0bab6e4e9563074a456d52b9e83745a7a7305761")
# Fetching ACS codebooks
DetailedTables <- load_variables(2022, "acs5", cache = TRUE)
SubjectTables <- load_variables(2022, "acs5/subject", cache = TRUE)
ProfileTables <- load_variables(2022, "acs5/profile", cache = TRUE)
Codebook <- DetailedTables %>%
select(name, label, concept)
Codebook <- bind_rows(Codebook,SubjectTables)
Codebook <- bind_rows(Codebook,ProfileTables)
Codebook <- Codebook %>%
distinct(label, .keep_all = TRUE)
rm(DetailedTables,
SubjectTables,
ProfileTables)
# Filtering the codebook
MyVars <- Codebook %>%
filter(grepl("GRAPI", label) &
grepl("Percent!!", label))
# Making a table of the filtered variables
MyVarsTable <- gt(MyVars) %>%
tab_header("Variables") %>%
cols_align(align = "left") %>%
gt_theme_538
# Displaying the table
MyVarsTable
# Defining the variable to retrieve
VariableList =
c(Estimate_ = "DP04_0142P")
# Fetching data
AllData <- get_acs(
geography = "state legislative district (lower chamber)",
state = "TN",
variables = VariableList,
year = 2022,
survey = "acs5",
output = "wide",
geometry = TRUE
)
# Mutating, selecting and sorting the data
AllData <- AllData %>%
mutate(
District = NAME,
Estimate = Estimate_E,
Estimate_MOE = Estimate_M,
From = round(Estimate - Estimate_MOE, 2),
To = round(Estimate + Estimate_MOE, 2)
) %>%
select(District, Estimate, Estimate_MOE, From, To, geometry) %>%
arrange(desc(Estimate))
# Filtering for Rutherford County districts
MyData <- AllData %>%
filter(
District == "State House District 13 (2022), Tennessee" |
District == "State House District 37 (2022), Tennessee" |
District == "State House District 49 (2022), Tennessee" |
District == "State House District 48 (2022), Tennessee" |
District == "State House District 34 (2022), Tennessee"
)
# Producing a map
MapData <- st_as_sf(MyData)
MyMap <- mapview(MapData,
zcol = "Estimate",
layer.name = "Estimate",
popup = TRUE)
#Displaying the map
MyMap
# Producing a table
TableData <- st_drop_geometry(MapData)
MyTable <- gt(TableData) %>%
tab_header("Estimate by district") %>%
cols_align(align = "left") %>%
gt_theme_538
# Displaying the table
MyTable
Almost every voting precinct in Rutherford County favored Bill Lee over his Democratic challenger Jason Martin in the 2022 gubernatorial race. Martin had more support in central Murfreesboro precincts and precincts in the north of the county closer to Nashville. The map below shows the percentage of votes cast for Lee by precinct.
# Required packages
if (!require("tidyverse"))
install.packages("tidyverse")
if (!require("mapview"))
install.packages("mapview")
if (!require("sf"))
install.packages("sf")
if (!require("leaflet"))
install.packages("leaflet")
if (!require("leaflet.extras2"))
install.packages("leaflet.extras2")
if (!require("plotly"))
install.packages("plotly")
library(tidyverse)
library(mapview)
library(sf)
library(leaflet)
library(leafpop)
library(readxl)
library(plotly)
# Download and import election data
# from TN Secretary of State web site:
# https://sos.tn.gov/elections/results
download.file(
"https://sos-prod.tnsosgovfiles.com/s3fs-public/document/20221108AllbyPrecinct.xlsx",
"RawElectionData.xlsx",
quiet = TRUE,
mode = "wb"
)
RawElectionData <- read_xlsx("RawElectionData.xlsx", sheet = "SOFFICELso")
# Filter, calculate, and select
# to get data of interest
# then store results in MyData dataframe
MyData <- RawElectionData %>%
filter(COUNTY == "Rutherford", CANDGROUP == "1") %>%
mutate(
Lee = PVTALLY1,
Martin = PVTALLY2,
Total = PVTALLY1 + PVTALLY2,
Lee_Pct = round(PVTALLY1 / (PVTALLY1 + PVTALLY2), 2),
Martin_Pct = round(PVTALLY2 / (PVTALLY1 + PVTALLY2), 2),
Winner = case_when(
PVTALLY1 > PVTALLY2 ~ "Lee (R)",
PVTALLY2 > PVTALLY1 ~ "Martin (D)",
.default = "Tie"
)
) %>%
select(COUNTY, PRECINCT, Total, Lee, Martin, Lee_Pct, Martin_Pct, Winner)
# Download and unzip a precinct map to pair with the vote data
download.file("https://github.com/drkblake/Data/raw/main/Voting_Precincts_5_31_24.zip","TNVotingPrecincts.zip")
unzip("TNVotingPrecincts.zip")
All_Precincts <- read_sf("Voting_Precincts_5_31_24.shp")
# Filter for particular county precincts
County_Precincts <- All_Precincts %>%
filter(COUNTY == 149) %>%
rename(PRECINCT = NEWVOTINGP)
# Merge election data and map file
MergeFile <- merge(MyData, County_Precincts, by = "PRECINCT", all.x = TRUE)
# Drop unneeded columns from MergeFile
MergeFile <- MergeFile %>%
select(PRECINCT,
Total,
Lee,
Martin,
Lee_Pct,
Martin_Pct,
Winner,
geometry)
# Format MergeFile as a map, and
# call the map MyMap
MyMapFile <- st_as_sf(MergeFile)
mypalette = colorRampPalette(c('blue', 'red'))
MyMap <- mapview(
MyMapFile,
zcol = "Lee_Pct",
col.regions = mypalette, at = seq(0, 1, .2),
map.types = ("OpenStreetMap"),
layer.name = "Pct. for Lee",
popup = popupTable(
MyMapFile,
feature.id = FALSE,
row.numbers = FALSE,
zcol = c(
"PRECINCT",
"Lee",
"Martin",
"Total",
"Lee_Pct",
"Martin_Pct",
"Winner"
)
)
)
# Showing the map
MyMap
Early voting for the 2024 presidential election took place in Rutherford County from Oct. 16 to Oct. 31. There were nine early voting locations, represented on the map below by a yellow marker. The blue marker locates MTSU.
# Required packages
if (!require("tidyverse"))
install.packages("tidyverse")
if (!require("sf"))
install.packages("sf")
if (!require("mapview"))
install.packages("mapview")
if (!require("leaflet"))
install.packages("leaflet")
if (!require("leaflet.extras2"))
install.packages("leaflet.extras2")
library(tidyverse)
library(sf)
library(mapview)
library(leaflet)
library(leaflet.extras2)
library(leafpop)
mapviewOptions(basemaps.color.shuffle = FALSE)
# Load the address and lat/long data
Addresses_gc <- read_csv("https://raw.githubusercontent.com/drkblake/Data/refs/heads/main/EarlyVotingLocations_gc.csv")
# Add MTSU
long <- -86.361861
lat <- 35.848997
Addresses_gc <- Addresses_gc %>%
add_row(Location = "MTSU",
long = long,
lat = lat) %>%
mutate(Point = case_when(Location == "MTSU" ~ "MTSU",
TRUE ~ "Early vote here"))
MapData <- st_as_sf(Addresses_gc,
coords = c("long", "lat"),
crs = 4326)
# Make the map
MyMap <- mapview(MapData,
zcol = "Point",
layer.name = "Point",
col.regions = c("orange", "blue"),
map.types = c("OpenStreetMap","Esri.WorldImagery"),
popup = popupTable(
MapData,
feature.id = FALSE,
row.numbers = FALSE,
zcol = c("Location",
"Address",
"Week",
"Weekend")))
# Show the map
MyMap
The graph below displays the early vote totals in Rutherford County broken down by day. Turnout was higher on weekdays, with severe dips in votes cast on the Saturdays that the polls were open.
Below, turnout is broken down by precinct. Total early voter turnout in Rutherford County ranged from 31 to 61 percent. Click on a precinct for more details.
if (!require("tidyverse"))
install.packages("tidyverse")
if (!require("foreign"))
install.packages("foreign")
if (!require("sf"))
install.packages("sf")
if (!require("scales"))
install.packages("scales")
if (!require("mapview"))
install.packages("mapview")
if (!require("leaflet"))
install.packages("leaflet")
if (!require("leaflet.extras2"))
install.packages("leaflet.extras2")
library(tidyverse)
library(foreign)
library(sf)
library(scales)
library(mapview)
library(leaflet)
library(leafpop)
# Fetch and unzip the early voting files
download.file("https://github.com/drkblake/Data/raw/refs/heads/main/DailyEVFiles.zip","DailyEVFiles.zip")
unzip("DailyEVFiles.zip")
# Read the first daily voting file
AddData <- read.dbf("10162024.dbf")
AllData <- AddData
# Add each day's file name to this list, then run
datafiles <- c("10172024.dbf",
"10182024.dbf",
"10192024.dbf",
"10212024.dbf",
"10222024.dbf",
"10232024.dbf",
"10242024.dbf",
"10252024.dbf",
"10262024.dbf",
"10282024.dbf",
"10292024.dbf",
"10302024.dbf",
"10312024.dbf")
for (x in datafiles) {
AddData <- read.dbf(x, as.is = FALSE)
AllData <- rbind(AllData, AddData)
}
# Save AllData file as .csv
write_csv(AllData,"EarlyVoterData2024.csv")
# Get total votes so far
TotalVotes <- nrow(AllData)
PctVotes <- round((TotalVotes / 224746)*100, digits = 0)
VotesByDay <- AllData %>%
group_by(VOTEDDATE) %>%
summarize(Votes = n()) %>%
rename(Date = VOTEDDATE) %>%
mutate(Date = (str_remove(Date,"2024-")))
# "#2C7865" is a green shade
chart = ggplot(data = VotesByDay,
aes(x = Date,
y = Votes))+
geom_bar(stat="identity", fill = "#41B3A2") +
geom_text(aes(label=comma(Votes)),
vjust=1.6,
color="black",
size=3.5)+
theme(
axis.title.x = element_blank(),
axis.ticks.y = element_blank(),
axis.title.y = element_blank(),
axis.text.y = element_blank(),
panel.background = element_blank())
chart
### Precinct-level map of early voting turnout ***
# Aggregate early voting data by precinct
PrecinctData <- AllData %>%
group_by(PCT_NBR) %>%
summarize(Votes = n()) %>%
rename(Precinct = PCT_NBR)
# Download and unzip a precinct map to pair with the vote data
download.file("https://github.com/drkblake/Data/raw/main/Voting_Precincts_5_31_24.zip","TNVotingPrecincts.zip")
unzip("TNVotingPrecincts.zip")
All_Precincts <- read_sf("Voting_Precincts_5_31_24.shp")
# Filter for RuCo precincts and
# strip dash from precinct numbers
County_Precincts <- All_Precincts %>%
filter(COUNTY == 149) %>%
rename(Precinct = NEWVOTINGP) %>%
mutate(Precinct = (str_remove(Precinct,"-")))
MapData <- left_join(PrecinctData, County_Precincts, by = "Precinct")
RegData <- read_csv("https://raw.githubusercontent.com/drkblake/Data/refs/heads/main/RegVotersRuCo.csv") %>%
mutate(Precinct = as.character(Precinct))
MapData <- left_join(MapData, RegData, by = "Precinct")
MapData <- MapData %>%
mutate(Percent = round((Votes/RegVoters)*100), digits = 0) %>%
rename(Voters = RegVoters) %>%
select(Precinct, Votes, Voters, Percent, geometry)
MapData_sf <- st_as_sf(MapData)
Map <- mapview(
MapData_sf,
zcol = "Percent",
layer.name = "Pct. early voted",
popup = popupTable(
MapData_sf,
feature.id = FALSE,
row.numbers = FALSE,
zcol = c(
"Precinct",
"Votes",
"Voters",
"Percent"
)
)
)
Map
MinTurnout <- min(MapData$Percent)
MaxTurnout <- max(MapData$Percent)
MedianTurnout <- median(MapData$Percent)
MeanTurnout <- mean(MapData$Percent)
The charts below are interactive. By clicking on the lines in the key for each candidate, you can compare and contrast the amount of cable news coverage that mentions Donald Trump, Kamala Harris and Joe Biden between late April and October.
if (!require("tidyverse"))
install.packages("tidyverse")
if (!require("plotly"))
install.packages("plotly")
library(tidyverse)
library(plotly)
# Defining date range
startdate <- "20240429"
enddate <- "20241112"
### Trump
# Defining query
# Note:
# In queries, use %20 to indicate a space
# Example: "Donald%20Trump" is "Donald Trump"
# Use parentheses and %20OR%20 for "either/or" queries
# Example: "(Harris%20OR%20Walz)" is "(Harris OR Walz)"
query <- "Donald%20Trump"
# Building the volume dataframe
vp1 <- "https://api.gdeltproject.org/api/v2/tv/tv?query="
vp2 <- "%20market:%22National%22&mode=timelinevol&format=csv&datanorm=raw&startdatetime="
vp3 <- "000000&enddatetime="
vp4 <- "000000"
text_v_url <- paste0(vp1, query, vp2, startdate, vp3, enddate, vp4)
v_url <- URLencode(text_v_url)
v_url
Trump <- read_csv(v_url)
Trump <- Trump %>%
rename(Date = 1, Trump = 3)
### Biden
# Defining query
query <- "Joe%20Biden"
# Building the volume dataframe
vp1 <- "https://api.gdeltproject.org/api/v2/tv/tv?query="
vp2 <- "%20market:%22National%22&mode=timelinevol&format=csv&datanorm=raw&startdatetime="
vp3 <- "000000&enddatetime="
vp4 <- "000000"
text_v_url <- paste0(vp1, query, vp2, startdate, vp3, enddate, vp4)
v_url <- URLencode(text_v_url)
v_url
Biden <- read_csv(v_url)
Biden <- Biden %>%
rename(Date = 1, Biden = 3)
AllData <- left_join(Trump, Biden)
### Harris
# Defining query
query <- "Kamala%20Harris"
# Building the volume dataframe
vp1 <- "https://api.gdeltproject.org/api/v2/tv/tv?query="
vp2 <- "%20market:%22National%22&mode=timelinevol&format=csv&datanorm=raw&startdatetime="
vp3 <- "000000&enddatetime="
vp4 <- "000000"
text_v_url <- paste0(vp1, query, vp2, startdate, vp3, enddate, vp4)
v_url <- URLencode(text_v_url)
v_url
Harris <- read_csv(v_url)
Harris <- Harris %>%
rename(Date = 1, Harris = 3)
AllData <- left_join(AllData, Harris)
### Graphic
AllData <- AllData %>%
arrange(Date)
# Add "WeekOf" variable to the data frame
if (!require("lubridate"))
install.packages("lubridate")
library(lubridate)
AllData$WeekOf <- round_date(AllData$Date,
unit = "week",
week_start = getOption("lubridate.week.start", 1))
CombinedCoverage <- AllData %>%
group_by(WeekOf) %>%
summarize(
Trump = sum(Trump, na.rm = TRUE),
Biden = sum(Biden, na.rm = TRUE),
Harris = sum(Harris, na.rm = TRUE)
)
fig <- plot_ly(
CombinedCoverage,
x = ~ WeekOf,
y = ~ Trump,
name = 'Trump',
type = 'scatter',
mode = 'none',
stackgroup = 'one',
fillcolor = '#B8001F')
fig <- fig %>% add_trace(y = ~ Biden,
name = 'Biden',
fillcolor = '#507687')
fig <- fig %>% add_trace(y = ~ Harris,
name = 'Harris',
fillcolor = '#384B70')
fig <- fig %>% layout(
title = 'Segment counts, by topic and week',
xaxis = list(title = "Week of", showgrid = FALSE),
yaxis = list(title = "Count", showgrid = TRUE)
)
fig
### Results for MSNBC, CNN, and Fox News, separately
# MSNBC
MSNBC <- AllData %>%
filter(Series == "MSNBC")
figMSNBC <- plot_ly(
MSNBC,
x = ~ WeekOf,
y = ~ Trump,
name = 'Trump',
type = 'scatter',
mode = 'none',
stackgroup = 'one',
fillcolor = '#B8001F')
figMSNBC <- figMSNBC %>% add_trace(y = ~ Biden,
name = 'Biden',
fillcolor = '#507687')
figMSNBC <- figMSNBC %>% add_trace(y = ~ Harris,
name = 'Harris',
fillcolor = '#384B70')
figMSNBC <- figMSNBC %>% layout(
title = 'Segment counts, MSNBC, by topic and week',
xaxis = list(title = "Week of", showgrid = FALSE),
yaxis = list(title = "Count", showgrid = TRUE)
)
figMSNBC
# CNN
CNN <- AllData %>%
filter(Series == "CNN")
figCNN <- plot_ly(
CNN,
x = ~ WeekOf,
y = ~ Trump,
name = 'Trump',
type = 'scatter',
mode = 'none',
stackgroup = 'one',
fillcolor = '#B8001F')
figCNN <- figCNN %>% add_trace(y = ~ Biden,
name = 'Biden',
fillcolor = '#507687')
figCNN <- figCNN %>% add_trace(y = ~ Harris,
name = 'Harris',
fillcolor = '#384B70')
figCNN <- figCNN %>% layout(
title = 'Segment counts, CNN, by topic and week',
xaxis = list(title = "Week of", showgrid = FALSE),
yaxis = list(title = "Count", showgrid = TRUE)
)
figCNN
#Fox News
FoxNews <- AllData %>%
filter(Series == "FOXNEWS")
figFox <- plot_ly(
FoxNews,
x = ~ WeekOf,
y = ~ Trump,
name = 'Trump',
type = 'scatter',
mode = 'none',
stackgroup = 'one',
fillcolor = '#B8001F')
figFox <- figFox %>% add_trace(y = ~ Biden,
name = 'Biden',
fillcolor = '#507687')
figFox <- figFox %>% add_trace(y = ~ Harris,
name = 'Harris',
fillcolor = '#384B70')
figFox <- figFox %>% layout(
title = 'Segment counts, Fox News, by topic and week',
xaxis = list(title = "Week of", showgrid = FALSE),
yaxis = list(title = "Count", showgrid = TRUE)
)
figFox
The following map tracked the winner of each state and was updated live on Election Day for MTSU’s election coverage media specials.
The graph below counted the electoral votes that each candidate won. It was also updated live on Election Day for MTSU’s election coverage media specials.
if (!require("tidyverse"))
install.packages("tidyverse")
if (!require("tidycensus"))
install.packages("tidycensus")
if (!require("sf"))
install.packages("sf")
if (!require("mapview"))
install.packages("mapview")
if (!require("DataEditR"))
install.packages("DataEditR")
if (!require("leaflet"))
install.packages("leaflet")
if (!require("leaflet.extras2"))
install.packages("leaflet.extras2")
if (!require("plotly"))
install.packages("plotly")
library(tidyverse)
library(tidycensus)
library(sf)
library(mapview)
library(DataEditR)
library(leaflet)
library(leafpop)
library(plotly)
# Getting a U.S.map shapefile
# Note: Provide your Census API key in the line below
census_api_key("0bab6e4e9563074a456d52b9e83745a7a7305761")
# U.S. Map
omit <- c("Alaska", "Puerto Rico", "Hawaii")
USMap <- get_acs(
geography = "state",
variables = "DP02_0154P",
year = 2022,
survey = "acs5",
output = "wide",
geometry = TRUE) %>%
filter(!(NAME %in% omit)) %>%
mutate(Full = NAME) %>%
select(GEOID, Full, geometry)
st_write(USMap,"USMap.shp", append = FALSE)
# Data file
USData <- read_csv("https://raw.githubusercontent.com/drkblake/Data/refs/heads/main/ElectoralVotesByState2024.csv")
# Edit / update election data
USData <- data_edit(USData)
write_csv(USData,"ElectoralVotesByState2024.csv")
write_csv(USData,"ElectoralVotesByState2024_latest.csv")
# Merge election and map data
USWinners <- merge(USMap,USData) %>%
mutate(Winner = (case_when(
Harris > Trump ~ "Harris",
Trump > Harris ~ "Trump",
.default = "Counting"))) %>%
mutate(Votes = Votes.to.allocate) %>%
select(State, Votes, Harris, Trump, Winner, geometry)
# Make the election map
USpalette = colorRampPalette(c("darkblue","darkred"))
BigMap <- mapview(USWinners, zcol = "Winner",
col.regions = USpalette,
alpha.regions = .8,
layer.name = "Winner",
popup = popupTable(
USWinners,
feature.id = FALSE,
row.numbers = FALSE,
zcol = c(
"State",
"Votes",
"Harris",
"Trump",
"Winner")))
# Showing the map
BigMap
# Make the electoral vote tracker
# Loading the data from a local .csv file
AllData <- read.csv("ElectoralVotesByState2024.csv")
AllData <- AllData %>%
arrange(State)
# Formatting and transforming the data for plotting
MyData <- AllData %>%
select(State, Votes.to.allocate,
Unallocated, Harris, Trump) %>%
arrange(State)
MyData <- MyData %>%
pivot_longer(cols=c(-State),names_to="Candidate")%>%
pivot_wider(names_from=c(State)) %>%
filter(Candidate == "Harris" |
Candidate == "Trump" |
Candidate == "Unallocated") %>%
arrange(Candidate)
MyData <- MyData %>%
mutate(total = rowSums(.[2:52]))
# Formatting a horizontal line for the plot
hline <- function(y = 0, color = "darkgray") {
list(
type = "line",
x0 = 0,
x1 = 1,
xref = "paper",
y0 = y,
y1 = y,
line = list(color = color)
)
}
# Producing the plot
fig <- plot_ly(
MyData,
x = ~ Candidate,
y = ~ AK,
legend = FALSE,
marker = list(color = c("384B70", "B8001F", "gray")),
type = 'bar',
name = 'AK'
) %>%
add_annotations(
visible = "legendonly",
x = ~ Candidate,
y = ~ (total + 20),
text = ~ total,
showarrow = FALSE,
textfont = list(size = 50)
)
fig <- fig %>% add_trace(y = ~ DE, name = 'DE')
fig <- fig %>% add_trace(y = ~ DC, name = 'DC')
fig <- fig %>% add_trace(y = ~ MT, name = 'MT')
fig <- fig %>% add_trace(y = ~ ND, name = 'ND')
fig <- fig %>% add_trace(y = ~ SD, name = 'SD')
fig <- fig %>% add_trace(y = ~ VT, name = 'VT')
fig <- fig %>% add_trace(y = ~ WY, name = 'WY')
fig <- fig %>% add_trace(y = ~ HI, name = 'HI')
fig <- fig %>% add_trace(y = ~ ID, name = 'ID')
fig <- fig %>% add_trace(y = ~ ME, name = 'ME')
fig <- fig %>% add_trace(y = ~ NH, name = 'NH')
fig <- fig %>% add_trace(y = ~ RI, name = 'RI')
fig <- fig %>% add_trace(y = ~ NE, name = 'NE')
fig <- fig %>% add_trace(y = ~ NM, name = 'NM')
fig <- fig %>% add_trace(y = ~ WV, name = 'WV')
fig <- fig %>% add_trace(y = ~ AR, name = 'AR')
fig <- fig %>% add_trace(y = ~ IA, name = 'IA')
fig <- fig %>% add_trace(y = ~ KS, name = 'KS')
fig <- fig %>% add_trace(y = ~ MS, name = 'MS')
fig <- fig %>% add_trace(y = ~ NV, name = 'NV')
fig <- fig %>% add_trace(y = ~ UT, name = 'UT')
fig <- fig %>% add_trace(y = ~ CT, name = 'CT')
fig <- fig %>% add_trace(y = ~ OK, name = 'OK')
fig <- fig %>% add_trace(y = ~ OR, name = 'OR')
fig <- fig %>% add_trace(y = ~ KY, name = 'KY')
fig <- fig %>% add_trace(y = ~ LA, name = 'LA')
fig <- fig %>% add_trace(y = ~ AL, name = 'AL')
fig <- fig %>% add_trace(y = ~ CO, name = 'CO')
fig <- fig %>% add_trace(y = ~ SC, name = 'SC')
fig <- fig %>% add_trace(y = ~ MD, name = 'MD')
fig <- fig %>% add_trace(y = ~ MN, name = 'MN')
fig <- fig %>% add_trace(y = ~ MO, name = 'MO')
fig <- fig %>% add_trace(y = ~ WI, name = 'WI')
fig <- fig %>% add_trace(y = ~ AZ, name = 'AZ')
fig <- fig %>% add_trace(y = ~ IN, name = 'IN')
fig <- fig %>% add_trace(y = ~ MA, name = 'MA')
fig <- fig %>% add_trace(y = ~ TN, name = 'TN')
fig <- fig %>% add_trace(y = ~ WA, name = 'WA')
fig <- fig %>% add_trace(y = ~ VA, name = 'VA')
fig <- fig %>% add_trace(y = ~ NJ, name = 'NJ')
fig <- fig %>% add_trace(y = ~ NC, name = 'NC')
fig <- fig %>% add_trace(y = ~ GA, name = 'GA')
fig <- fig %>% add_trace(y = ~ MI, name = 'MI')
fig <- fig %>% add_trace(y = ~ OH, name = 'OH')
fig <- fig %>% add_trace(y = ~ IL, name = 'IL')
fig <- fig %>% add_trace(y = ~ PA, name = 'PA')
fig <- fig %>% add_trace(y = ~ FL, name = 'FL')
fig <- fig %>% add_trace(y = ~ NY, name = 'NY')
fig <- fig %>% add_trace(y = ~ TX, name = 'TX')
fig <- fig %>% add_trace(y = ~ CA, name = 'CA')
fig <- fig %>% layout(yaxis = list(title = 'Electoral votes'),
barmode = 'stack',
showlegend = FALSE,
shapes = list(hline(270)))
# Showing the plot
fig
Donald Trump won Tennessee in both 2020 and 2024. However, his victory in 2016 was not from lack of turnout by Democrats. 2024 was a different story.
The map below shows that both parties gained voters in most counties in the state in the 2020 election over the 2016 election.
Between 2020 and 2024, the Democrats hemorrhaged voters in call but seven counties. Republicans, however, gained voters in all but eight counties.
# Required packages
if (!require("tidyverse"))
install.packages("tidyverse")
if (!require("mapview"))
install.packages("mapview")
if (!require("sf"))
install.packages("sf")
if (!require("leaflet"))
install.packages("leaflet")
if (!require("leaflet.extras2"))
install.packages("leaflet.extras2")
if (!require("plotly"))
install.packages("plotly")
if (!require("tidycensus"))
install.packages("tidycensus")
library(tidyverse)
library(mapview)
library(sf)
library(leaflet)
library(leafpop)
library(readxl)
library(plotly)
library(tidycensus)
# Go ahead and transmit your Census API key
# so you don't forget to do it later when getting
# the map you will need:
census_api_key("0bab6e4e9563074a456d52b9e83745a7a7305761")
# Download and import election data
# from TN Secretary of State web site:
# https://sos.tn.gov/elections/results
# Get 2016 data
download.file(
"https://sos-tn-gov-files.s3.amazonaws.com/StateGeneralbyPrecinctNov2016.xlsx",
"RawElectionData2016.xlsx",
quiet = TRUE,
mode = "wb"
)
RawElectionData2016 <- read_xlsx("RawElectionData2016.xlsx")
# Filter, calculate, and select
# to get data of interest
# then store results in MyData dataframe
MyData2016 <- RawElectionData2016%>%
filter(OFFICENAME == "United States President",
CANDGROUP == "1") %>%
mutate(
Rep16 = PVTALLY1,
Dem16 = PVTALLY2,
Total16 = Rep16 + Dem16) %>%
select(COUNTY, PRECINCT, OFFICENAME, Rep16, Dem16, Total16)
CountyData2016 <- MyData2016 %>%
select(COUNTY, Rep16, Dem16, Total16) %>%
group_by(COUNTY) %>%
summarize(across(everything(), sum))
# Get 2020 data
download.file(
"https://sos-tn-gov-files.tnsosfiles.com/Nov2020PrecinctDetail.xlsx",
"RawElectionData2020.xlsx",
quiet = TRUE,
mode = "wb"
)
RawElectionData2020 <- read_xlsx("RawElectionData2020.xlsx", sheet = "SOFFICEL")
# Filter, calculate, and select
# to get data of interest
# then store results in MyData dataframe
MyData2020 <- RawElectionData2020%>%
filter(OFFICENAME == "United States President",
CANDGROUP == "1") %>%
mutate(
Rep20 = PVTALLY1,
Dem20 = PVTALLY2,
Total20 = Rep20 + Dem20) %>%
select(COUNTY, PRECINCT, OFFICENAME, Rep20, Dem20, Total20)
MyData2020 <- MyData2020 %>%
mutate(COUNTY = case_when(COUNTY == "Dekalb" ~ "DeKalb",
TRUE ~ COUNTY))
CountyData2020 <- MyData2020%>%
select(COUNTY, Rep20, Dem20, Total20) %>%
group_by(COUNTY) %>%
summarize(across(everything(), sum))
# Get 2024 data
CountyData2024 <- read_csv("https://raw.githubusercontent.com/drkblake/Data/refs/heads/main/CountyData2024.csv")
# Merge Data Files
AllData <- left_join(CountyData2016, CountyData2020, by = "COUNTY")
AllData <- left_join(AllData, CountyData2024, by = "COUNTY")
AllData <- AllData %>%
mutate(
Rep16to20 = Rep20-Rep16,
Dem16to20 = Dem20-Dem16,
Rep20to24 = Rep24-Rep20,
Dem20to24 = Dem24-Dem20,
Rep20finish = case_when(
Rep16to20 < 0 ~ "Loss",
Rep16to20 > 0~ "Gain",
TRUE ~ "No change"),
Dem20finish = case_when(
Dem16to20 < 0 ~ "Loss",
Dem16to20 > 0~ "Gain",
TRUE ~ "No change"),
Rep24finish = case_when(
Rep20to24 < 0 ~ "Loss",
Rep20to24 > 0~ "Gain",
TRUE ~ "No change"),
Dem24finish = case_when(
Dem20to24 < 0 ~ "Loss",
Dem20to24 > 0~ "Gain",
TRUE ~ "No change"))
# Get a county map
CountyMap <- get_acs(geography = "county",
state = "TN",
variables = c(Japanese_ = "DP05_0048"),
year = 2022,
survey = "acs5",
output = "wide",
geometry = TRUE)
CountyMap <- CountyMap %>%
mutate(COUNTY = (str_remove(NAME," County, Tennessee"))) %>%
left_join(AllData, CountyMap, by = "COUNTY") %>%
select(COUNTY,
Rep16, Dem16, Total16,
Rep20, Dem20, Total20,
Rep24, Dem24, Total24,
Rep16to20, Dem16to20,
Rep20to24, Dem20to24,
Rep20finish,Dem20finish,
Rep24finish,Dem24finish,
geometry)
# 2020 Map
Map16to20Rep <- mapview(
CountyMap,
zcol = "Rep20finish",
col.regions = "red",
layer.name = "Rep 2020",
popup = popupTable(
CountyMap,
feature.id = FALSE,
row.numbers = FALSE,
zcol = c("COUNTY", "Rep16", "Rep20", "Rep16to20")
)
)
mypalette = colorRampPalette(c('blue', 'lightblue'))
Map16to20Dem <- mapview(
CountyMap,
zcol = "Dem20finish",
col.regions = mypalette,
layer.name = "Dem 2020",
popup = popupTable(
CountyMap,
feature.id = FALSE,
row.numbers = FALSE,
zcol = c("COUNTY", "Dem16", "Dem20", "Dem16to20")
)
)
Map16to20Dem | Map16to20Rep
# 2024 Map
mypalette = colorRampPalette(c('red', 'pink'))
Map20to24Rep <- mapview(
CountyMap,
zcol = "Rep24finish",
col.regions = mypalette,
layer.name = "Rep 2024",
popup = popupTable(
CountyMap,
feature.id = FALSE,
row.numbers = FALSE,
zcol = c("COUNTY", "Rep20", "Rep24", "Rep20to24")
)
)
mypalette = colorRampPalette(c('blue', 'lightblue'))
Map20to24Dem <- mapview(
CountyMap,
zcol = "Dem24finish",
col.regions = mypalette,
layer.name = "Dem 2024",
popup = popupTable(
CountyMap,
feature.id = FALSE,
row.numbers = FALSE,
zcol = c("COUNTY", "Dem20", "Dem24", "Dem20to24")
)
)
Map20to24Dem | Map20to24Rep