Introduction

During my Fall 2024 semester at Middle Tennessee State University, I enrolled in the course JOUR 3520: Election Analytics. The course taught me the skills necessary to create graphs and maps within RStudio, to create RStudio publications and to code within the R program.

Below is my portfolio from the semester. Topics we covered range from Rutherford County specific election results, both for state officials and President; trends in cable news and individual Tennessee counties’ Conservative shift during the Presidential Election.

This portfolio includes a GRAPI of Rutherford County, organized by Tennessee House District; Rutherford County election results for the 2022 Tennessee governor election; a map of Early Voting locations in Rutherford County for the 2024 Presidential Election; graphs and maps of early voter turn out in Rutherford County; a cable news topic tracker; a 2024 Electoral College map and Tennessee county Presidential voting shifts.

The graphs and maps displayed in this portfolio, and the codes for each individual map and graph are included as well.

GRAPI by Tennessee House District

The GRAPI, otherwise known as Gross Rent as a Percentage of Household Income, of Rutherford County varies. Between 35% and 42% of Rutherford County residents’ household incomes are spent on rent — and these percentages can be seen in each Tennessee House district in Rutherford Conty, with the Northwest corner of the county, which is closest to Nashville, spending 42.9% of their household income of rent, while the Eastern side of the county, where lower-income individuals and students live show 34.4% of household income being used on rent.

Financial experts recommend that no more than30 percent of one’s household income should be spent on rent — and this suggestion is not met in any of Rutherford Counties House districts.

Rep. Robert Stevens, a Republican in the Tennessee House of Representatives, supported a bill to prompt more low-income housing in Rutherford County. Rutherford County’s delegation to the state House all supported the bill, except for Republican Rep. Bryan Terry, who represents the eastern half of the county, where renters spend an average of 34.4% of their household income on rent.

Estimate by district
District Estimate Estimate_MOE From To
State House District 13 (2022), Tennessee 42.9 7.7 35.2 50.6
State House District 37 (2022), Tennessee 40.3 5.5 34.8 45.8
State House District 34 (2022), Tennessee 35.9 4.8 31.1 40.7
State House District 49 (2022), Tennessee 35.7 5.6 30.1 41.3
State House District 48 (2022), Tennessee 34.4 5.9 28.5 40.3

Here is the code that I used to create the map and table for the GRAPI:

# Installing and loading required packages

if (!require("tidyverse"))
  install.packages("tidyverse")
if (!require("tidycensus"))
  install.packages("tidycensus")
if (!require("sf"))
  install.packages("sf")
if (!require("mapview"))
  install.packages("mapview")
if (!require("gtExtras"))
  install.packages("gtExtras")

library(tidyverse)
library(tidycensus)
library(sf)
library(mapview)
library(gtExtras)

# Transmitting API key

census_api_key("4f4872040fb894c0803cdfac75bb4cc0c6e6ab8b")
## To install your API key for use in future sessions, run this function with `install = TRUE`.
# Fetching ACS codebooks

DetailedTables <- load_variables(2022, "acs5", cache = TRUE)
SubjectTables <- load_variables(2022, "acs5/subject", cache = TRUE)
ProfileTables <- load_variables(2022, "acs5/profile", cache = TRUE)
Codebook <- DetailedTables %>% 
  select(name, label, concept)
Codebook <- bind_rows(Codebook,SubjectTables)
Codebook <- bind_rows(Codebook,ProfileTables)
Codebook <- Codebook %>% 
  distinct(label, .keep_all = TRUE)
rm(DetailedTables,
   SubjectTables,
   ProfileTables)

# Filtering the codebook

MyVars <- Codebook %>% 
  filter(grepl("GRAPI", label) &
           grepl("Percent!!", label))

# Making a table of the filtered variables

MyVarsTable <- gt(MyVars) %>%
  tab_header("Variables") %>%
  cols_align(align = "left") %>%
  gt_theme_538

# Displaying the table

MyVarsTable
Variables
name label concept
DP04_0136P Percent!!GROSS RENT AS A PERCENTAGE OF HOUSEHOLD INCOME (GRAPI)!!Occupied units paying rent (excluding units where GRAPI cannot be computed) Selected Housing Characteristics
DP04_0137P Percent!!GROSS RENT AS A PERCENTAGE OF HOUSEHOLD INCOME (GRAPI)!!Occupied units paying rent (excluding units where GRAPI cannot be computed)!!Less than 15.0 percent Selected Housing Characteristics
DP04_0138P Percent!!GROSS RENT AS A PERCENTAGE OF HOUSEHOLD INCOME (GRAPI)!!Occupied units paying rent (excluding units where GRAPI cannot be computed)!!15.0 to 19.9 percent Selected Housing Characteristics
DP04_0139P Percent!!GROSS RENT AS A PERCENTAGE OF HOUSEHOLD INCOME (GRAPI)!!Occupied units paying rent (excluding units where GRAPI cannot be computed)!!20.0 to 24.9 percent Selected Housing Characteristics
DP04_0140P Percent!!GROSS RENT AS A PERCENTAGE OF HOUSEHOLD INCOME (GRAPI)!!Occupied units paying rent (excluding units where GRAPI cannot be computed)!!25.0 to 29.9 percent Selected Housing Characteristics
DP04_0141P Percent!!GROSS RENT AS A PERCENTAGE OF HOUSEHOLD INCOME (GRAPI)!!Occupied units paying rent (excluding units where GRAPI cannot be computed)!!30.0 to 34.9 percent Selected Housing Characteristics
DP04_0142P Percent!!GROSS RENT AS A PERCENTAGE OF HOUSEHOLD INCOME (GRAPI)!!Occupied units paying rent (excluding units where GRAPI cannot be computed)!!35.0 percent or more Selected Housing Characteristics
DP04_0143P Percent!!GROSS RENT AS A PERCENTAGE OF HOUSEHOLD INCOME (GRAPI)!!Occupied units paying rent (excluding units where GRAPI cannot be computed)!!Not computed Selected Housing Characteristics
# Defining the variable to retrieve

VariableList = 
  c(Estimate_ = "DP04_0142P")

# Fetching data

AllData <- get_acs(
  geography = "state legislative district (lower chamber)",
  state = "TN",
  variables = VariableList,
  year = 2022,
  survey = "acs5",
  output = "wide",
  geometry = TRUE
)
## Getting data from the 2018-2022 5-year ACS
## Downloading feature geometry from the Census website.  To cache shapefiles for use in future sessions, set `options(tigris_use_cache = TRUE)`.
## Using the ACS Data Profile
# Mutating, selecting and sorting the data

AllData <- AllData %>%
  mutate(
    District = NAME,
    Estimate = Estimate_E,
    Estimate_MOE = Estimate_M,
    From = round(Estimate - Estimate_MOE, 2),
    To = round(Estimate + Estimate_MOE, 2)
  ) %>%
  select(District, Estimate, Estimate_MOE, From, To, geometry) %>%
  arrange(desc(Estimate))

# Filtering for Rutherford County districts

MyData <- AllData %>%
  filter(
    District == "State House District 13 (2022), Tennessee" |
      District == "State House District 37 (2022), Tennessee" |
      District == "State House District 49 (2022), Tennessee" |
      District == "State House District 48 (2022), Tennessee" |
      District == "State House District 34 (2022), Tennessee"
  )

# Producing a map

MapData <- st_as_sf(MyData)

MyMap <- mapview(MapData,
        zcol = "Estimate",
        layer.name = "Estimate",
        popup = TRUE)
#Displaying the map

MyMap
# Producing a table

TableData <- st_drop_geometry(MapData)
MyTable <- gt(TableData) %>%
  tab_header("Estimate by district") %>%
  cols_align(align = "left") %>%
  gt_theme_538

# Displaying the table

MyTable
Estimate by district
District Estimate Estimate_MOE From To
State House District 13 (2022), Tennessee 42.9 7.7 35.2 50.6
State House District 37 (2022), Tennessee 40.3 5.5 34.8 45.8
State House District 34 (2022), Tennessee 35.9 4.8 31.1 40.7
State House District 49 (2022), Tennessee 35.7 5.6 30.1 41.3
State House District 48 (2022), Tennessee 34.4 5.9 28.5 40.3

Rutherford County Election Results, 2022 Race for governor

The following map displays Gubernatorial voting in Rutherford County, by precinct, for the 2022 election.

Here is the code that I used to create the map for the election results:

# Required packages

if (!require("tidyverse"))
  install.packages("tidyverse")
if (!require("mapview"))
  install.packages("mapview")
if (!require("sf"))
  install.packages("sf")
if (!require("leaflet"))
  install.packages("leaflet")
if (!require("leaflet.extras2"))
  install.packages("leaflet.extras2")
if (!require("plotly"))
  install.packages("plotly")

library(tidyverse)
library(mapview)
library(sf)
library(leaflet)
library(leafpop)
library(readxl)
library(plotly)

# Download and import election data
# from TN Secretary of State web site:
# https://sos.tn.gov/elections/results

download.file(
  "https://sos-prod.tnsosgovfiles.com/s3fs-public/document/20221108AllbyPrecinct.xlsx",
  "RawElectionData.xlsx",
  quiet = TRUE,
  mode = "wb"
)

RawElectionData <- read_xlsx("RawElectionData.xlsx", sheet = "SOFFICELso")

# Filter, calculate, and select
# to get data of interest
# then store results in MyData dataframe

MyData <- RawElectionData %>%
  filter(COUNTY == "Rutherford", CANDGROUP == "1") %>%
  mutate(
    Lee = PVTALLY1,
    Martin = PVTALLY2,
    Total = PVTALLY1 + PVTALLY2,
    Lee_Pct = round(PVTALLY1 / (PVTALLY1 + PVTALLY2), 2),
    Martin_Pct = round(PVTALLY2 / (PVTALLY1 + PVTALLY2), 2),
    Winner = case_when(
      PVTALLY1 > PVTALLY2 ~ "Lee (R)",
      PVTALLY2 > PVTALLY1 ~ "Martin (D)",
      .default = "Tie"
    )
  ) %>%
  select(COUNTY, PRECINCT, Total, Lee, Martin, Lee_Pct, Martin_Pct, Winner)

# Download and unzip a precinct map to pair with the vote data

download.file("https://github.com/drkblake/Data/raw/main/Voting_Precincts_5_31_24.zip","TNVotingPrecincts.zip")

unzip("TNVotingPrecincts.zip")

All_Precincts <- read_sf("Voting_Precincts_5_31_24.shp")

# Filter for particular county precincts

County_Precincts <- All_Precincts %>%
  filter(COUNTY == 149) %>%
  rename(PRECINCT = NEWVOTINGP)

# Merge election data and map file

MergeFile <- merge(MyData, County_Precincts, by = "PRECINCT", all.x = TRUE)

# Drop unneeded columns from MergeFile

MergeFile <- MergeFile %>%
  select(PRECINCT,
         Total,
         Lee,
         Martin,
         Lee_Pct,
         Martin_Pct,
         Winner,
         geometry)

# Format MergeFile as a map, and
# call the map MyMap

MyMapFile <- st_as_sf(MergeFile)

mypalette = colorRampPalette(c('blue', 'red'))

MyMap <- mapview(
  MyMapFile,
  zcol = "Lee_Pct",
  col.regions = mypalette, at = seq(0, 1, .2),
  map.types = ("OpenStreetMap"),
  layer.name = "Pct. for Lee",
  popup = popupTable(
    MyMapFile,
    feature.id = FALSE,
    row.numbers = FALSE,
    zcol = c(
      "PRECINCT",
      "Lee",
      "Martin",
      "Total",
      "Lee_Pct",
      "Martin_Pct",
      "Winner"
    )
  )
)

# Showing the map

MyMap

Early Voting locations in Rutherford County

Rutherford County residents were able to vote early in the 2024 Presidential Election on weekdays and select Saturdays from Oct. 16 to Oct. 31 at nine polling locations in the county.

Each orange marker on the map represents a polling location. The blue dot is a reference point, marking Middle Tennessee State University.

Here is the code I used to produce the location map:

# Required packages

if (!require("tidyverse"))
  install.packages("tidyverse")
if (!require("sf"))
  install.packages("sf")
if (!require("mapview"))
  install.packages("mapview")
if (!require("leaflet")) 
  install.packages("leaflet")
if (!require("leaflet.extras2")) 
  install.packages("leaflet.extras2")

library(tidyverse)
library(sf)
library(mapview)
library(leaflet)
library(leaflet.extras2)
library(leafpop)

mapviewOptions(basemaps.color.shuffle = FALSE)

# Load the address and lat/long data

Addresses_gc <- read_csv("https://raw.githubusercontent.com/drkblake/Data/refs/heads/main/EarlyVotingLocations_gc.csv")
## New names:
## Rows: 9 Columns: 7
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," chr
## (4): Location, Address, Week, Weekend dbl (2): lat, long lgl (1): ...7
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `` -> `...7`
# Add MTSU

long <- -86.361861
lat <- 35.848997

Addresses_gc <- Addresses_gc %>% 
  add_row(Location = "MTSU",
          long = long,
          lat = lat) %>% 
  mutate(Point = case_when(Location == "MTSU" ~ "MTSU",
                           TRUE ~ "Early vote here"))

MapData <- st_as_sf(Addresses_gc,
                    coords = c("long", "lat"),
                    crs = 4326)

# Make the map

MyMap <- mapview(MapData,
                 zcol = "Point",
                 layer.name = "Point",
                 col.regions = c("orange", "blue"),
                 map.types = c("OpenStreetMap","Esri.WorldImagery"),
                 popup = popupTable(
                   MapData,
                   feature.id = FALSE,
                   row.numbers = FALSE,
                   zcol = c("Location",
                            "Address",
                            "Week",
                            "Weekend")))
# Show the map

MyMap

Early Voting totals in Rutherford County

As of Oct. 31, 2024, 115,133 people had voted early in Rutherford County. This total is about 51% of all eligible voters in Rutherford County.

The following chart shows votes per day for each day of early voting. As well, the map below the chart shows early voter turnout per Rutherford County precinct.

chart

Map

For reference, here is the code I used for the map and chart:

if (!require("tidyverse"))
  install.packages("tidyverse")
if (!require("foreign"))
  install.packages("foreign")
if (!require("sf"))
  install.packages("sf")
if (!require("scales"))
  install.packages("scales")
if (!require("mapview"))
  install.packages("mapview")
if (!require("leaflet"))
  install.packages("leaflet")
if (!require("leaflet.extras2"))
  install.packages("leaflet.extras2")

library(tidyverse)
library(foreign)
library(sf)
library(scales)
library(mapview)
library(leaflet)
library(leafpop)

# Fetch and unzip the early voting files

download.file("https://github.com/drkblake/Data/raw/refs/heads/main/DailyEVFiles.zip","DailyEVFiles.zip")

unzip("DailyEVFiles.zip")

# Read the first daily voting file

AddData <- read.dbf("10162024.dbf")
AllData <- AddData

# Add each day's  file name to this list, then run

datafiles <- c("10172024.dbf",
               "10182024.dbf",
               "10192024.dbf",
               "10212024.dbf",
               "10222024.dbf",
               "10232024.dbf",
               "10242024.dbf",
               "10252024.dbf",
               "10262024.dbf",
               "10282024.dbf",
               "10292024.dbf",
               "10302024.dbf",
               "10312024.dbf")

for (x in datafiles) {
  AddData <- read.dbf(x, as.is = FALSE)
  AllData <- rbind(AllData, AddData)
}

# Save AllData file as .csv
write_csv(AllData,"EarlyVoterData2024.csv")

# Get total votes so far

TotalVotes <- nrow(AllData)
PctVotes <- round((TotalVotes / 224746)*100, digits = 0)

VotesByDay <- AllData %>% 
  group_by(VOTEDDATE) %>% 
  summarize(Votes = n()) %>% 
  rename(Date = VOTEDDATE) %>% 
  mutate(Date = (str_remove(Date,"2024-")))

# "#2C7865" is a green shade

chart = ggplot(data = VotesByDay,
               aes(x = Date,
                   y = Votes))+
  geom_bar(stat="identity", fill = "#41B3A2") +
  geom_text(aes(label=comma(Votes)),
            vjust=1.6,
            color="black",
            size=3.5)+
  theme(
    axis.title.x = element_blank(),
    axis.ticks.y = element_blank(),
    axis.title.y = element_blank(),
    axis.text.y = element_blank(),
    panel.background = element_blank())

chart

### Precinct-level map of early voting turnout ***

# Aggregate early voting data by precinct

PrecinctData <- AllData %>% 
  group_by(PCT_NBR) %>% 
  summarize(Votes = n()) %>% 
  rename(Precinct = PCT_NBR)

# Download and unzip a precinct map to pair with the vote data

download.file("https://github.com/drkblake/Data/raw/main/Voting_Precincts_5_31_24.zip","TNVotingPrecincts.zip")

unzip("TNVotingPrecincts.zip")

All_Precincts <- read_sf("Voting_Precincts_5_31_24.shp")

# Filter for RuCo precincts and 
# strip dash from precinct numbers

County_Precincts <- All_Precincts %>%
  filter(COUNTY == 149) %>%
  rename(Precinct = NEWVOTINGP) %>% 
  mutate(Precinct = (str_remove(Precinct,"-")))

MapData <-  left_join(PrecinctData, County_Precincts, by = "Precinct")

RegData <- read_csv("https://raw.githubusercontent.com/drkblake/Data/refs/heads/main/RegVotersRuCo.csv") %>% 
  mutate(Precinct = as.character(Precinct))
## Rows: 33 Columns: 2
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## dbl (2): Precinct, RegVoters
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
MapData <- left_join(MapData, RegData, by = "Precinct")

MapData <- MapData %>% 
  mutate(Percent = round((Votes/RegVoters)*100), digits = 0) %>%
  rename(Voters = RegVoters) %>% 
  select(Precinct, Votes, Voters, Percent, geometry)

MapData_sf <- st_as_sf(MapData)

Map <- mapview(
  MapData_sf,
  zcol = "Percent",
  layer.name = "Pct. early voted",
  popup = popupTable(
    MapData_sf,
    feature.id = FALSE,
    row.numbers = FALSE,
    zcol = c(
      "Precinct",
      "Votes",
      "Voters",
      "Percent"
    )
  )
)

Map
MinTurnout <- min(MapData$Percent)
MaxTurnout <- max(MapData$Percent)
MedianTurnout <- median(MapData$Percent)
MeanTurnout <- mean(MapData$Percent)

Cable News Topic Tracker

The following graphs show the frequency of coverage of Joe Biden, Kamala Harris and Donald Trump on CNN, MSNBC and Fox News.

For reference, here are the codes that produced each graph. The combined graph is the first code, then MSNBC, CNN, and Fox:

if (!require("tidyverse"))
  install.packages("tidyverse")
if (!require("plotly"))
  install.packages("plotly")
library(tidyverse)
library(plotly)

# Defining date range

startdate <- "20240429"
enddate <- "20241028"

### Trump

# Defining query

# Note:
# In queries, use %20 to indicate a space
# Example: "Donald%20Trump" is "Donald Trump"
# Use parentheses and %20OR%20 for "either/or" queries
# Example: "(Harris%20OR%20Walz)" is "(Harris OR Walz)"

query <- "Donald%20Trump"

# Building the volume dataframe

vp1 <- "https://api.gdeltproject.org/api/v2/tv/tv?query="
vp2 <- "%20market:%22National%22&mode=timelinevol&format=csv&datanorm=raw&startdatetime="
vp3 <- "000000&enddatetime="
vp4 <- "000000"
text_v_url <- paste0(vp1, query, vp2, startdate, vp3, enddate, vp4)
v_url <- URLencode(text_v_url)
v_url
## [1] "https://api.gdeltproject.org/api/v2/tv/tv?query=Donald%20Trump%20market:%22National%22&mode=timelinevol&format=csv&datanorm=raw&startdatetime=20240429000000&enddatetime=20241028000000"
Trump <- read_csv(v_url)
## Rows: 1494 Columns: 3
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (1): Series
## dbl  (1): Value
## date (1): Date (Daily +00:00: 04/29/2024 - 10/28/2024)
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Trump <- Trump %>%
  rename(Date = 1, Trump = 3)

### Biden

# Defining query

query <- "Joe%20Biden"

# Building the volume dataframe

vp1 <- "https://api.gdeltproject.org/api/v2/tv/tv?query="
vp2 <- "%20market:%22National%22&mode=timelinevol&format=csv&datanorm=raw&startdatetime="
vp3 <- "000000&enddatetime="
vp4 <- "000000"
text_v_url <- paste0(vp1, query, vp2, startdate, vp3, enddate, vp4)
v_url <- URLencode(text_v_url)
v_url
## [1] "https://api.gdeltproject.org/api/v2/tv/tv?query=Joe%20Biden%20market:%22National%22&mode=timelinevol&format=csv&datanorm=raw&startdatetime=20240429000000&enddatetime=20241028000000"
Biden <- read_csv(v_url)
## Rows: 1494 Columns: 3
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (1): Series
## dbl  (1): Value
## date (1): Date (Daily +00:00: 04/29/2024 - 10/28/2024)
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Biden <- Biden %>%
  rename(Date = 1, Biden = 3)

AllData <- left_join(Trump, Biden)
## Joining with `by = join_by(Date, Series)`
### Harris

# Defining query

query <- "Kamala%20Harris"

# Building the volume dataframe

vp1 <- "https://api.gdeltproject.org/api/v2/tv/tv?query="
vp2 <- "%20market:%22National%22&mode=timelinevol&format=csv&datanorm=raw&startdatetime="
vp3 <- "000000&enddatetime="
vp4 <- "000000"
text_v_url <- paste0(vp1, query, vp2, startdate, vp3, enddate, vp4)
v_url <- URLencode(text_v_url)
v_url
## [1] "https://api.gdeltproject.org/api/v2/tv/tv?query=Kamala%20Harris%20market:%22National%22&mode=timelinevol&format=csv&datanorm=raw&startdatetime=20240429000000&enddatetime=20241028000000"
Harris <- read_csv(v_url)
## Rows: 1494 Columns: 3
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (1): Series
## dbl  (1): Value
## date (1): Date (Daily +00:00: 04/29/2024 - 10/28/2024)
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Harris <- Harris %>%
  rename(Date = 1, Harris = 3)

AllData <- left_join(AllData, Harris)
## Joining with `by = join_by(Date, Series)`
### Graphic

AllData <- AllData %>%
  arrange(Date)

# Add "WeekOf" variable to the data frame

if (!require("lubridate"))
  install.packages("lubridate")
library(lubridate)

AllData$WeekOf <- round_date(AllData$Date,
                             unit = "week",
                             week_start = getOption("lubridate.week.start", 1))

CombinedCoverage <- AllData %>%
  group_by(WeekOf) %>%
  summarize(
    Trump = sum(Trump, na.rm = TRUE),
    Biden = sum(Biden, na.rm = TRUE),
    Harris = sum(Harris, na.rm = TRUE)
  )

fig <- plot_ly(
  CombinedCoverage,
  x = ~ WeekOf,
  y = ~ Trump,
  name = 'Trump',
  type = 'scatter',
  mode = 'none',
  stackgroup = 'one',
  fillcolor = '#B8001F')
fig <- fig %>% add_trace(y = ~ Biden,
                         name = 'Biden',
                         fillcolor = '#507687')

fig <- fig %>% add_trace(y = ~ Harris,
                         name = 'Harris',
                         fillcolor = '#384B70')
fig <- fig %>% layout(
  title = 'Segment counts, by topic and week',
  xaxis = list(title = "Week of", showgrid = FALSE),
  yaxis = list(title = "Count", showgrid = TRUE)
)

fig
# MSNBC

MSNBC <- AllData %>%
  filter(Series == "MSNBC")
figMSNBC <- plot_ly(
  MSNBC,
  x = ~ WeekOf,
  y = ~ Trump,
  name = 'Trump',
  type = 'scatter',
  mode = 'none',
  stackgroup = 'one',
  fillcolor = '#B8001F')
figMSNBC <- figMSNBC %>% add_trace(y = ~ Harris,
                                   name = 'Biden',
                                   fillcolor = '#507687')
figMSNBC <- figMSNBC %>% add_trace(y = ~ Harris,
                                   name = 'Harris',
                                   fillcolor = '#384B70')
figMSNBC <- figMSNBC %>% layout(
  title = 'Segment counts, MSNBC, by topic and week',
  xaxis = list(title = "Week of", showgrid = FALSE),
  yaxis = list(title = "Count", showgrid = TRUE)
)

figMSNBC
# CNN

CNN <- AllData %>%
  filter(Series == "CNN")
figCNN <- plot_ly(
  CNN,
  x = ~ WeekOf,
  y = ~ Trump,
  name = 'Trump',
  type = 'scatter',
  mode = 'none',
  stackgroup = 'one',
  fillcolor = '#B8001F')
figCNN <- figCNN %>% add_trace(y = ~ Harris,
                               name = 'Biden',
                               fillcolor = '#507687')
figCNN <- figCNN %>% add_trace(y = ~ Harris,
                               name = 'Harris',
                               fillcolor = '#384B70')
figCNN <- figCNN %>% layout(
  title = 'Segment counts, CNN, by topic and week',
  xaxis = list(title = "Week of", showgrid = FALSE),
  yaxis = list(title = "Count", showgrid = TRUE)
)

figCNN
#Fox News

FoxNews <- AllData %>%
  filter(Series == "FOXNEWS")
figFox <- plot_ly(
  FoxNews,
  x = ~ WeekOf,
  y = ~ Trump,
  name = 'Trump',
  type = 'scatter',
  mode = 'none',
  stackgroup = 'one',
  fillcolor = '#B8001F')
figFox <- figFox %>% add_trace(y = ~ Harris,
                               name = 'Biden',
                               fillcolor = '#507687')
figFox <- figFox %>% add_trace(y = ~ Harris,
                               name = 'Harris',
                               fillcolor = '#384B70')
figFox <- figFox %>% layout(
  title = 'Segment counts, Fox News, by topic and week',
  xaxis = list(title = "Week of", showgrid = FALSE),
  yaxis = list(title = "Count", showgrid = TRUE)
)

figFox

Electoral College Map, 2024 Presidential Election

Here is the code that I used for the interactive electoral map:

if (!require("tidyverse"))
  install.packages("tidyverse")
if (!require("tidycensus"))
  install.packages("tidycensus")
if (!require("sf"))
  install.packages("sf")
if (!require("mapview"))
  install.packages("mapview")
if (!require("DataEditR"))
  install.packages("DataEditR")
if (!require("leaflet"))
  install.packages("leaflet")
if (!require("leaflet.extras2"))
  install.packages("leaflet.extras2")
if (!require("plotly"))
  install.packages("plotly")

library(tidyverse)
library(tidycensus)
library(sf)
library(mapview)
library(DataEditR)
library(leaflet)
library(leafpop)
library(plotly)

# Getting a U.S.map shapefile

# Note: Provide your Census API key in the line below

census_api_key("4f4872040fb894c0803cdfac75bb4cc0c6e6ab8b")
## To install your API key for use in future sessions, run this function with `install = TRUE`.
# U.S. Map

omit <- c("Alaska", "Puerto Rico", "Hawaii")
USMap <- get_acs(
  geography = "state",
  variables = "DP02_0154P",
  year = 2022,
  survey = "acs5",
  output = "wide",
  geometry = TRUE) %>%
  filter(!(NAME %in% omit)) %>%
  mutate(Full = NAME) %>%
  select(GEOID, Full, geometry)
## Getting data from the 2018-2022 5-year ACS
## Downloading feature geometry from the Census website.  To cache shapefiles for use in future sessions, set `options(tigris_use_cache = TRUE)`.
## Using the ACS Data Profile
st_write(USMap,"USMap.shp", append = FALSE)
## Deleting layer `USMap' using driver `ESRI Shapefile'
## Writing layer `USMap' to data source `USMap.shp' using driver `ESRI Shapefile'
## Writing 49 features with 2 fields and geometry type Multi Polygon.
# Data file

USData <- read_csv("https://raw.githubusercontent.com/drkblake/Data/refs/heads/main/ElectoralVotesByState2024.csv")
## Rows: 51 Columns: 6
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (2): Full, State
## dbl (4): Votes.to.allocate, Unallocated, Harris, Trump
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
# Edit / update election data

USData <- data_edit(USData)
## 
## Listening on http://127.0.0.1:5499
write_csv(USData,"ElectoralVotesByState2024.csv")
write_csv(USData,"ElectoralVotesByState2024_latest.csv")
          
# Merge election and map data

USWinners <- merge(USMap,USData) %>% 
  mutate(Winner = (case_when(
    Harris > Trump ~ "Harris",
    Trump > Harris ~ "Trump",
    .default = "Counting"))) %>%
  mutate(Votes = Votes.to.allocate) %>% 
  select(State, Votes, Harris, Trump, Winner, geometry)

# Make the election map

USpalette = colorRampPalette(c("darkblue","darkred"))

BigMap <- mapview(USWinners, zcol = "Winner",
        col.regions = USpalette,
        alpha.regions = .8,
        layer.name = "Winner",
        popup = popupTable(
          USWinners,
          feature.id = FALSE,
          row.numbers = FALSE,
          zcol = c(
            "State",
            "Votes",
            "Harris",
            "Trump",
            "Winner")))


# Make the electoral vote tracker

# Loading the data from a local .csv file

AllData <- read.csv("ElectoralVotesByState2024.csv")
AllData <- AllData %>%
  arrange(State)

# Formatting and transforming the data for plotting

MyData <- AllData %>%
  select(State, Votes.to.allocate,
         Unallocated, Harris, Trump) %>% 
  arrange(State)

MyData <- MyData %>%
  pivot_longer(cols=c(-State),names_to="Candidate")%>%
  pivot_wider(names_from=c(State)) %>%
  filter(Candidate == "Harris" |
           Candidate == "Trump" |
           Candidate == "Unallocated") %>%
  arrange(Candidate)

MyData <- MyData %>% 
  mutate(total = rowSums(.[2:52]))

# Formatting a horizontal line for the plot

hline <- function(y = 0, color = "darkgray") {
  list(
    type = "line",
    x0 = 0,
    x1 = 1,
    xref = "paper",
    y0 = y,
    y1 = y,
    line = list(color = color)
  )
}

# Producing the plot

fig <- plot_ly(
  MyData,
  x = ~ Candidate,
  y = ~ AK,
  legend = FALSE,
  marker = list(color = c("384B70", "B8001F", "gray")),
  type = 'bar',
  name = 'AK'
) %>% 
  add_annotations(
    visible = "legendonly",
    x = ~ Candidate,
    y = ~ (total + 20),
    text = ~ total,
    showarrow = FALSE,
    textfont = list(size = 50)
  ) 
fig <- fig %>% add_trace(y = ~ DE, name = 'DE')
fig <- fig %>% add_trace(y = ~ DC, name = 'DC')
fig <- fig %>% add_trace(y = ~ MT, name = 'MT')
fig <- fig %>% add_trace(y = ~ ND, name = 'ND')
fig <- fig %>% add_trace(y = ~ SD, name = 'SD')
fig <- fig %>% add_trace(y = ~ VT, name = 'VT')
fig <- fig %>% add_trace(y = ~ WY, name = 'WY')
fig <- fig %>% add_trace(y = ~ HI, name = 'HI')
fig <- fig %>% add_trace(y = ~ ID, name = 'ID')
fig <- fig %>% add_trace(y = ~ ME, name = 'ME')
fig <- fig %>% add_trace(y = ~ NH, name = 'NH')
fig <- fig %>% add_trace(y = ~ RI, name = 'RI')
fig <- fig %>% add_trace(y = ~ NE, name = 'NE')
fig <- fig %>% add_trace(y = ~ NM, name = 'NM')
fig <- fig %>% add_trace(y = ~ WV, name = 'WV')
fig <- fig %>% add_trace(y = ~ AR, name = 'AR')
fig <- fig %>% add_trace(y = ~ IA, name = 'IA')
fig <- fig %>% add_trace(y = ~ KS, name = 'KS')
fig <- fig %>% add_trace(y = ~ MS, name = 'MS')
fig <- fig %>% add_trace(y = ~ NV, name = 'NV')
fig <- fig %>% add_trace(y = ~ UT, name = 'UT')
fig <- fig %>% add_trace(y = ~ CT, name = 'CT')
fig <- fig %>% add_trace(y = ~ OK, name = 'OK')
fig <- fig %>% add_trace(y = ~ OR, name = 'OR')
fig <- fig %>% add_trace(y = ~ KY, name = 'KY')
fig <- fig %>% add_trace(y = ~ LA, name = 'LA')
fig <- fig %>% add_trace(y = ~ AL, name = 'AL')
fig <- fig %>% add_trace(y = ~ CO, name = 'CO')
fig <- fig %>% add_trace(y = ~ SC, name = 'SC')
fig <- fig %>% add_trace(y = ~ MD, name = 'MD')
fig <- fig %>% add_trace(y = ~ MN, name = 'MN')
fig <- fig %>% add_trace(y = ~ MO, name = 'MO')
fig <- fig %>% add_trace(y = ~ WI, name = 'WI')
fig <- fig %>% add_trace(y = ~ AZ, name = 'AZ')
fig <- fig %>% add_trace(y = ~ IN, name = 'IN')
fig <- fig %>% add_trace(y = ~ MA, name = 'MA')
fig <- fig %>% add_trace(y = ~ TN, name = 'TN')
fig <- fig %>% add_trace(y = ~ WA, name = 'WA')
fig <- fig %>% add_trace(y = ~ VA, name = 'VA')
fig <- fig %>% add_trace(y = ~ NJ, name = 'NJ')
fig <- fig %>% add_trace(y = ~ NC, name = 'NC')
fig <- fig %>% add_trace(y = ~ GA, name = 'GA')
fig <- fig %>% add_trace(y = ~ MI, name = 'MI')
fig <- fig %>% add_trace(y = ~ OH, name = 'OH')
fig <- fig %>% add_trace(y = ~ IL, name = 'IL')
fig <- fig %>% add_trace(y = ~ PA, name = 'PA')
fig <- fig %>% add_trace(y = ~ FL, name = 'FL')
fig <- fig %>% add_trace(y = ~ NY, name = 'NY')
fig <- fig %>% add_trace(y = ~ TX, name = 'TX')
fig <- fig %>% add_trace(y = ~ CA, name = 'CA')
fig <- fig %>% layout(yaxis = list(title = 'Electoral votes'),
                      barmode = 'stack',
                      showlegend = FALSE,
                      shapes = list(hline(270)))

Tennessee County Voting Shifts; 2016-2020, 2020-2024

Tennessee counties have increasingly grown red since the 2016 election. Though Trump also won by a landslide in Tennessee in 2016 and 2020, in 2024 there was an incredible conservative shift through the entire state. Not only was there a conservative shift, there was an increase in new votes that were conservative that further drowned out the chances of Kamala Harris winning Tennessee’s Electoral votes in the 2024 election.

Here is the code used for both county-specific maps:

# Required packages

if (!require("tidyverse"))
  install.packages("tidyverse")
if (!require("mapview"))
  install.packages("mapview")
if (!require("sf"))
  install.packages("sf")
if (!require("leaflet"))
  install.packages("leaflet")
if (!require("leaflet.extras2"))
  install.packages("leaflet.extras2")
if (!require("plotly"))
  install.packages("plotly")
if (!require("tidycensus"))
  install.packages("tidycensus")

library(tidyverse)
library(mapview)
library(sf)
library(leaflet)
library(leafpop)
library(readxl)
library(plotly)
library(tidycensus)

# Go ahead and transmit your Census API key
# so you don't forget to do it later when getting
# the map you will need:

census_api_key("4f4872040fb894c0803cdfac75bb4cc0c6e6ab8b")
## To install your API key for use in future sessions, run this function with `install = TRUE`.
# Download and import election data
# from TN Secretary of State web site:
# https://sos.tn.gov/elections/results

# Get 2016 data

download.file(
  "https://sos-tn-gov-files.s3.amazonaws.com/StateGeneralbyPrecinctNov2016.xlsx",
  "RawElectionData2016.xlsx",
  quiet = TRUE,
  mode = "wb"
)

RawElectionData2016 <- read_xlsx("RawElectionData2016.xlsx")

# Filter, calculate, and select
# to get data of interest
# then store results in MyData dataframe

MyData2016 <- RawElectionData2016%>%
  filter(OFFICENAME == "United States President",
         CANDGROUP == "1") %>%
  mutate(
    Rep16 = PVTALLY1,
    Dem16 = PVTALLY2,
    Total16 = Rep16 + Dem16) %>%
  select(COUNTY, PRECINCT, OFFICENAME, Rep16, Dem16, Total16)

CountyData2016 <- MyData2016 %>% 
  select(COUNTY, Rep16, Dem16, Total16) %>% 
  group_by(COUNTY) %>% 
  summarize(across(everything(), sum)) 

# Get 2020 data

download.file(
  "https://sos-tn-gov-files.tnsosfiles.com/Nov2020PrecinctDetail.xlsx",
  "RawElectionData2020.xlsx",
  quiet = TRUE,
  mode = "wb"
)

RawElectionData2020 <- read_xlsx("RawElectionData2020.xlsx", sheet = "SOFFICEL")

# Filter, calculate, and select
# to get data of interest
# then store results in MyData dataframe

MyData2020 <- RawElectionData2020%>%
  filter(OFFICENAME == "United States President",
         CANDGROUP == "1") %>%
  mutate(
    Rep20 = PVTALLY1,
    Dem20 = PVTALLY2,
    Total20 = Rep20 + Dem20) %>%
  select(COUNTY, PRECINCT, OFFICENAME, Rep20, Dem20, Total20)

MyData2020 <- MyData2020 %>% 
  mutate(COUNTY = case_when(COUNTY == "Dekalb" ~ "DeKalb",
                            TRUE ~ COUNTY))

CountyData2020 <- MyData2020%>% 
  select(COUNTY, Rep20, Dem20, Total20) %>% 
  group_by(COUNTY) %>% 
  summarize(across(everything(), sum)) 

# Get 2024 data

CountyData2024 <- read_csv("https://raw.githubusercontent.com/drkblake/Data/refs/heads/main/CountyData2024.csv")
## Rows: 95 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): COUNTY
## dbl (3): Rep24, Dem24, Total24
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
# Merge Data Files

AllData <- left_join(CountyData2016, CountyData2020, by = "COUNTY")
AllData <- left_join(AllData, CountyData2024, by = "COUNTY")

AllData <- AllData %>% 
  mutate(
    Rep16to20 = Rep20-Rep16,
    Dem16to20 = Dem20-Dem16,
    Rep20to24 = Rep24-Rep20,
    Dem20to24 = Dem24-Dem20,
    Rep20finish = case_when(
      Rep16to20 < 0 ~ "Loss",
      Rep16to20 > 0~ "Gain",
      TRUE ~ "No change"),
    Dem20finish = case_when(
      Dem16to20 < 0 ~ "Loss",
      Dem16to20 > 0~ "Gain",
      TRUE ~ "No change"),
    Rep24finish = case_when(
      Rep20to24 < 0 ~ "Loss",
      Rep20to24 > 0~ "Gain",
      TRUE ~ "No change"),
    Dem24finish = case_when(
      Dem20to24 < 0 ~ "Loss",
      Dem20to24 > 0~ "Gain",
      TRUE ~ "No change"))

# Get a county map

CountyMap <- get_acs(geography = "county",
                   state = "TN",
                   variables = c(Japanese_ = "DP05_0048"),
                   year = 2022,
                   survey = "acs5",
                   output = "wide",
                   geometry = TRUE)
## Getting data from the 2018-2022 5-year ACS
## Downloading feature geometry from the Census website.  To cache shapefiles for use in future sessions, set `options(tigris_use_cache = TRUE)`.
## Using the ACS Data Profile
CountyMap <- CountyMap %>%
  mutate(COUNTY = (str_remove(NAME," County, Tennessee"))) %>%
  left_join(AllData, CountyMap, by = "COUNTY") %>% 
  select(COUNTY,
         Rep16, Dem16, Total16,
         Rep20, Dem20, Total20,
         Rep24, Dem24, Total24,
         Rep16to20, Dem16to20,
         Rep20to24, Dem20to24,
         Rep20finish,Dem20finish,
         Rep24finish,Dem24finish,
         geometry)

# 2020 Map

Map16to20Rep <- mapview(
  CountyMap,
  zcol = "Rep20finish",
  col.regions = "red",
  layer.name = "Rep 2020",
  popup = popupTable(
    CountyMap,
    feature.id = FALSE,
    row.numbers = FALSE,
    zcol = c("COUNTY", "Rep16", "Rep20", "Rep16to20")
  )
)

mypalette = colorRampPalette(c('blue', 'lightblue'))

Map16to20Dem <- mapview(
  CountyMap,
  zcol = "Dem20finish",
  col.regions = mypalette,
  layer.name = "Dem 2020",
  popup = popupTable(
    CountyMap,
    feature.id = FALSE,
    row.numbers = FALSE,
    zcol = c("COUNTY", "Dem16", "Dem20", "Dem16to20")
  )
)

Map16to20Dem | Map16to20Rep
# 2024 Map

mypalette = colorRampPalette(c('red', 'pink'))

Map20to24Rep <- mapview(
  CountyMap,
  zcol = "Rep24finish",
  col.regions = mypalette,
  layer.name = "Rep 2024",
  popup = popupTable(
    CountyMap,
    feature.id = FALSE,
    row.numbers = FALSE,
    zcol = c("COUNTY", "Rep20", "Rep24", "Rep20to24")
  )
)

mypalette = colorRampPalette(c('blue', 'lightblue'))

Map20to24Dem <- mapview(
  CountyMap,
  zcol = "Dem24finish",
  col.regions = mypalette,
  layer.name = "Dem 2024",
  popup = popupTable(
    CountyMap,
    feature.id = FALSE,
    row.numbers = FALSE,
    zcol = c("COUNTY", "Dem20", "Dem24", "Dem20to24")
  )
)

Map20to24Dem | Map20to24Rep