Refer to http://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data))
for variable description. The response variable is Class
and all others are predictors.
Only run the following code once to install the package
caret. The German credit scoring data in
provided in that package.
install.packages('caret')
library(caret) #this package contains the german data with its numeric format
## Loading required package: ggplot2
## Loading required package: lattice
data(GermanCredit)
GermanCredit$Class <- as.numeric(GermanCredit$Class == "Good") # use this code to convert `Class` into True or False (equivalent to 1 or 0)
GermanCredit$Class <- as.factor(GermanCredit$Class) #make sure `Class` is a factor as SVM require a factor response,now 1 is good and 0 is bad.
str(GermanCredit)
## 'data.frame': 1000 obs. of 62 variables:
## $ Duration : int 6 48 12 42 24 36 24 36 12 30 ...
## $ Amount : int 1169 5951 2096 7882 4870 9055 2835 6948 3059 5234 ...
## $ InstallmentRatePercentage : int 4 2 2 2 3 2 3 2 2 4 ...
## $ ResidenceDuration : int 4 2 3 4 4 4 4 2 4 2 ...
## $ Age : int 67 22 49 45 53 35 53 35 61 28 ...
## $ NumberExistingCredits : int 2 1 1 1 2 1 1 1 1 2 ...
## $ NumberPeopleMaintenance : int 1 1 2 2 2 2 1 1 1 1 ...
## $ Telephone : num 0 1 1 1 1 0 1 0 1 1 ...
## $ ForeignWorker : num 1 1 1 1 1 1 1 1 1 1 ...
## $ Class : Factor w/ 2 levels "0","1": 2 1 2 2 1 2 2 2 2 1 ...
## $ CheckingAccountStatus.lt.0 : num 1 0 0 1 1 0 0 0 0 0 ...
## $ CheckingAccountStatus.0.to.200 : num 0 1 0 0 0 0 0 1 0 1 ...
## $ CheckingAccountStatus.gt.200 : num 0 0 0 0 0 0 0 0 0 0 ...
## $ CheckingAccountStatus.none : num 0 0 1 0 0 1 1 0 1 0 ...
## $ CreditHistory.NoCredit.AllPaid : num 0 0 0 0 0 0 0 0 0 0 ...
## $ CreditHistory.ThisBank.AllPaid : num 0 0 0 0 0 0 0 0 0 0 ...
## $ CreditHistory.PaidDuly : num 0 1 0 1 0 1 1 1 1 0 ...
## $ CreditHistory.Delay : num 0 0 0 0 1 0 0 0 0 0 ...
## $ CreditHistory.Critical : num 1 0 1 0 0 0 0 0 0 1 ...
## $ Purpose.NewCar : num 0 0 0 0 1 0 0 0 0 1 ...
## $ Purpose.UsedCar : num 0 0 0 0 0 0 0 1 0 0 ...
## $ Purpose.Furniture.Equipment : num 0 0 0 1 0 0 1 0 0 0 ...
## $ Purpose.Radio.Television : num 1 1 0 0 0 0 0 0 1 0 ...
## $ Purpose.DomesticAppliance : num 0 0 0 0 0 0 0 0 0 0 ...
## $ Purpose.Repairs : num 0 0 0 0 0 0 0 0 0 0 ...
## $ Purpose.Education : num 0 0 1 0 0 1 0 0 0 0 ...
## $ Purpose.Vacation : num 0 0 0 0 0 0 0 0 0 0 ...
## $ Purpose.Retraining : num 0 0 0 0 0 0 0 0 0 0 ...
## $ Purpose.Business : num 0 0 0 0 0 0 0 0 0 0 ...
## $ Purpose.Other : num 0 0 0 0 0 0 0 0 0 0 ...
## $ SavingsAccountBonds.lt.100 : num 0 1 1 1 1 0 0 1 0 1 ...
## $ SavingsAccountBonds.100.to.500 : num 0 0 0 0 0 0 0 0 0 0 ...
## $ SavingsAccountBonds.500.to.1000 : num 0 0 0 0 0 0 1 0 0 0 ...
## $ SavingsAccountBonds.gt.1000 : num 0 0 0 0 0 0 0 0 1 0 ...
## $ SavingsAccountBonds.Unknown : num 1 0 0 0 0 1 0 0 0 0 ...
## $ EmploymentDuration.lt.1 : num 0 0 0 0 0 0 0 0 0 0 ...
## $ EmploymentDuration.1.to.4 : num 0 1 0 0 1 1 0 1 0 0 ...
## $ EmploymentDuration.4.to.7 : num 0 0 1 1 0 0 0 0 1 0 ...
## $ EmploymentDuration.gt.7 : num 1 0 0 0 0 0 1 0 0 0 ...
## $ EmploymentDuration.Unemployed : num 0 0 0 0 0 0 0 0 0 1 ...
## $ Personal.Male.Divorced.Seperated : num 0 0 0 0 0 0 0 0 1 0 ...
## $ Personal.Female.NotSingle : num 0 1 0 0 0 0 0 0 0 0 ...
## $ Personal.Male.Single : num 1 0 1 1 1 1 1 1 0 0 ...
## $ Personal.Male.Married.Widowed : num 0 0 0 0 0 0 0 0 0 1 ...
## $ Personal.Female.Single : num 0 0 0 0 0 0 0 0 0 0 ...
## $ OtherDebtorsGuarantors.None : num 1 1 1 0 1 1 1 1 1 1 ...
## $ OtherDebtorsGuarantors.CoApplicant : num 0 0 0 0 0 0 0 0 0 0 ...
## $ OtherDebtorsGuarantors.Guarantor : num 0 0 0 1 0 0 0 0 0 0 ...
## $ Property.RealEstate : num 1 1 1 0 0 0 0 0 1 0 ...
## $ Property.Insurance : num 0 0 0 1 0 0 1 0 0 0 ...
## $ Property.CarOther : num 0 0 0 0 0 0 0 1 0 1 ...
## $ Property.Unknown : num 0 0 0 0 1 1 0 0 0 0 ...
## $ OtherInstallmentPlans.Bank : num 0 0 0 0 0 0 0 0 0 0 ...
## $ OtherInstallmentPlans.Stores : num 0 0 0 0 0 0 0 0 0 0 ...
## $ OtherInstallmentPlans.None : num 1 1 1 1 1 1 1 1 1 1 ...
## $ Housing.Rent : num 0 0 0 0 0 0 0 1 0 0 ...
## $ Housing.Own : num 1 1 1 0 0 0 1 0 1 1 ...
## $ Housing.ForFree : num 0 0 0 1 1 1 0 0 0 0 ...
## $ Job.UnemployedUnskilled : num 0 0 0 0 0 0 0 0 0 0 ...
## $ Job.UnskilledResident : num 0 0 1 0 0 1 0 0 1 0 ...
## $ Job.SkilledEmployee : num 1 1 0 1 1 0 1 0 0 0 ...
## $ Job.Management.SelfEmp.HighlyQualified: num 0 0 0 0 0 0 0 1 0 1 ...
#load tree model packages
library(rpart)
library(rpart.plot)
#This is the code that drop variables that provide no information in the data
GermanCredit = GermanCredit[,-c(14,19,27,30,35,40,44,45,48,52,55,58,62)]
2024 for
reproducibility. (5pts)set.seed(2024)
index <- sample(1:nrow(GermanCredit),nrow(GermanCredit)*0.80)
credit_train = GermanCredit[index,]
credit_test = GermanCredit[-index,]
Class) are right. (10pts)fit_tree <- rpart(Class ~ ., data=credit_train, method = "class")
Your observation: Fitting tree model to training data.
rpart.plot(fit_tree,extra=4, yesno=2)
pred_credit_train <- predict(fit_tree, credit_train, type="class")
Cmatrix_train = table(true = credit_train$Class,
pred = pred_credit_train)
Cmatrix_train
## pred
## true 0 1
## 0 145 84
## 1 50 521
#MR
1 - sum(diag(Cmatrix_train))/sum(Cmatrix_train)
## [1] 0.1675
Your observation: Confusion matrix has a MR equal to .1675.
pred_credit_test <- predict(fit_tree, credit_test, type="class")
Cmatrix_test = table(true = credit_test$Class,
pred = pred_credit_test)
Cmatrix_test
## pred
## true 0 1
## 0 36 35
## 1 26 103
#MR
1 - sum(diag(Cmatrix_test))/sum(Cmatrix_test)
## [1] 0.305
Your observation: Testing Cmatrix made with a MR of .305
pred_prob_test = predict(fit_tree, credit_test, type = "prob")
pred_prob_test = pred_prob_test[,"1"]
library(ROCR)
pred <- prediction(pred_prob_test, credit_test$Class)
perf <- performance(pred, "tpr", "fpr")
plot(perf, colorize=TRUE)
unlist(slot(performance(pred, "auc"), "y.values"))
## [1] 0.6742548
We will use the built-in mtcars dataset to predict miles per gallon (mpg) using other car characteristics. The dataset includes information about 32 cars from Motor Trend magazine (1973-74).
# Load the mtcars dataset
data(mtcars)
# Display the structure of the dataset
str(mtcars)
## 'data.frame': 32 obs. of 11 variables:
## $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
## $ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
## $ disp: num 160 160 108 258 360 ...
## $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
## $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
## $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
## $ qsec: num 16.5 17 18.6 19.4 17 ...
## $ vs : num 0 0 1 1 0 1 0 1 1 1 ...
## $ am : num 1 1 1 0 0 0 0 0 0 0 ...
## $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
## $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
set.seed(2024)
index <- sample(1:nrow(mtcars),nrow(mtcars)*0.85)
cars_train = mtcars[index,]
cars_test = mtcars[-index,]
fit_tree <- rpart(mpg ~ ., data=cars_train, method = "anova")
rpart.plot(fit_tree)
Your observation:The decision tree separates the data based on whether
cyl is greater than or equal to 5. This separation shows 63% of the data
points meet this condition. It uses this rule to divide the data into
two parts.
pred_cars_train <- predict(fit_tree, cars_train)
mse <- mean((cars_train$mpg - pred_cars_train)^2)
mse
## [1] 14.43124
r_squared <- 1 - (sum((cars_train$mpg - pred_cars_train)^2) / sum((cars_train$mpg - mean(cars_train$mpg))^2))
r_squared
## [1] 0.6121479
Your observation: MSE= 14.43124 and R squared= .6121479
pred_cars_test <- predict(fit_tree, cars_test)
mse <- mean((cars_test$mpg - pred_cars_test)^2)
mse
## [1] 2.619646
r_squared <- 1 - (sum((cars_test$mpg - pred_cars_test)^2) / sum((cars_test$mpg - mean(cars_test$mpg))^2))
r_squared
## [1] 0.8567122
Your observation:MSE= 2.619646 and R squared= .8567122