# Load packages

# Core
library(tidyverse)
library(tidyquant)
library(readr)

# Time series
library(lubridate)
library(tibbletime)

# modeling
library(broom)

Goal

Examine how each asset contributes to portfolio standard deviation. This is to ensure that our risk is not concentrated in any one asset.

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Component Contribution Step-by-Step

Refresh your memory on covariance with this video. Click this link Refresh your memory on matrix multiplication. Click this link

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG          EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062304862 -0.002935242  0.0366064890  0.052133419  0.0499231114
## 2013-02-28  0.0058914999 -0.023105457 -0.0129696606  0.016175136  0.0126780436
## 2013-03-28  0.0009840951 -0.010235012  0.0129696606  0.040258198  0.0372679131
## 2013-04-30  0.0096392965  0.012085018  0.0489677138  0.001222769  0.0190307116
## 2013-05-31 -0.0202143242 -0.049483490 -0.0306557725  0.041976175  0.0233350277
## 2013-06-28 -0.0157779420 -0.054728448 -0.0271442917 -0.001402946 -0.0134345749
## 2013-07-31  0.0026875403  0.013159761  0.0518602560  0.063541343  0.0503862173
## 2013-08-30 -0.0082981357 -0.025705612 -0.0197461995 -0.034743650 -0.0304517049
## 2013-09-30  0.0111440309  0.069588604  0.0753384098  0.063873833  0.0311561121
## 2013-10-31  0.0082921343  0.040861306  0.0320817953  0.034234107  0.0452665809
## 2013-11-29 -0.0025101584 -0.002593914  0.0054496212  0.041661007  0.0292070353
## 2013-12-31 -0.0055825811 -0.004074362  0.0215279752  0.012891964  0.0255963740
## 2014-01-31  0.0152911485 -0.090322685 -0.0534134659 -0.035774996 -0.0358847361
## 2014-02-28  0.0037574826  0.033220664  0.0595052487  0.045257247  0.0445100996
## 2014-03-31 -0.0014818209  0.038021935 -0.0046026436  0.013315354  0.0082615147
## 2014-04-30  0.0081832345  0.007772509  0.0165293705 -0.023184358  0.0069277627
## 2014-05-30  0.0117219867  0.029091079  0.0158285748  0.006205142  0.0229409866
## 2014-06-30 -0.0005762926  0.023734166  0.0091651842  0.037718808  0.0204346863
## 2014-07-31 -0.0025117738  0.013555355 -0.0263797076 -0.052009291 -0.0135287334
## 2014-08-29  0.0114304619  0.027904792  0.0018004227  0.043657969  0.0387046452
## 2014-09-30 -0.0061676122 -0.080856682 -0.0395984935 -0.061260619 -0.0138923761
## 2014-10-31  0.0105850917  0.014096564 -0.0026548113  0.068875056  0.0232777910
## 2014-11-28  0.0065485495 -0.015541295  0.0006253892  0.004773254  0.0271017536
## 2014-12-31  0.0014749538 -0.040442222 -0.0407466449  0.025296062 -0.0025401012
## 2015-01-30  0.0203156280 -0.006896096  0.0062262577 -0.054627971 -0.0300768986
## 2015-02-27 -0.0089886938  0.043136379  0.0614506994  0.056914789  0.0546815450
## 2015-03-31  0.0037406823 -0.015086135 -0.0143888628  0.010156163 -0.0158301064
## 2015-04-30 -0.0032335538  0.066281407  0.0358167361 -0.018417669  0.0097858662
## 2015-05-29 -0.0043833436 -0.041911352  0.0019524970  0.007509950  0.0127743072
## 2015-06-30 -0.0108254631 -0.029746500 -0.0316786743  0.004171446 -0.0205214450
## 2015-07-31  0.0085846526 -0.065178196  0.0201144823 -0.027375747  0.0223381483
## 2015-08-31 -0.0033642543 -0.092512485 -0.0771524036 -0.047268114 -0.0628869554
## 2015-09-30  0.0080819502 -0.031824717 -0.0451948928 -0.038464715 -0.0258468656
## 2015-10-30  0.0006852592  0.061808437  0.0640258868  0.063589794  0.0816351279
## 2015-11-30 -0.0038977972 -0.025560605 -0.0075557984  0.024415184  0.0036481908
## 2015-12-31 -0.0019192883 -0.038947247 -0.0235949440 -0.052156988 -0.0174335669
## 2016-01-29  0.0123299781 -0.051636463 -0.0567579867 -0.060306861 -0.0510686612
## 2016-02-29  0.0088315936 -0.008211756 -0.0339139014  0.020605037 -0.0008262107
## 2016-03-31  0.0087087724  0.121879069  0.0637455167  0.089910344  0.0651000668
## 2016-04-29  0.0025466496  0.004079216  0.0219754377  0.021044463  0.0039334794
## 2016-05-31  0.0001350422 -0.037628444 -0.0008562977  0.004397115  0.0168685493
## 2016-06-30  0.0191667175  0.044582471 -0.0244916243  0.008292251  0.0034698006
## 2016-07-29  0.0054292954  0.052442278  0.0390003689  0.049348092  0.0358220702
## 2016-08-31 -0.0021555702  0.008798536  0.0053267805  0.011261392  0.0011967358
## 2016-09-30  0.0005160947  0.024872507  0.0132791596  0.008614667  0.0000578937
## 2016-10-31 -0.0082054843 -0.008312009 -0.0224035856 -0.038134713 -0.0174888886
## 2016-11-30 -0.0259899093 -0.045161963 -0.0179744820  0.125246086  0.0361760604
## 2016-12-30  0.0025378989 -0.002529818  0.0267027783  0.031491742  0.0200690115
## 2017-01-31  0.0021267435  0.064431515  0.0323817996 -0.012143598  0.0177365377
## 2017-02-28  0.0064377882  0.017257601  0.0118365518  0.013428560  0.0385393372
## 2017-03-31 -0.0005532418  0.036189104  0.0318057133 -0.006533452  0.0012490866
## 2017-04-28  0.0090290990  0.016866399  0.0239522905  0.005108207  0.0098773083
## 2017-05-31  0.0068478338  0.028059769  0.0348100411 -0.022862626  0.0140140844
## 2017-06-30 -0.0001828249  0.009223875  0.0029561422  0.029151995  0.0063547608
## 2017-07-31  0.0033345506  0.056594446  0.0261877263  0.007481251  0.0203456490
## 2017-08-31  0.0093687681  0.023244075 -0.0004482935 -0.027564675  0.0029136566
## 2017-09-29 -0.0057317504 -0.000446495  0.0233428450  0.082321900  0.0199490758
## 2017-10-31  0.0009775716  0.032278478  0.0166535960  0.005915744  0.0232908143
## 2017-11-30 -0.0014839345 -0.003896856  0.0068700389  0.036913515  0.0301077395
## 2017-12-29  0.0047402535  0.036925396  0.0133984686 -0.003731246  0.0120550613
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)

covariance_matrix
##               AGG          EEM          EFA           IJS           SPY
## AGG  7.398455e-05 0.0001042109 0.0000417835 -7.811962e-05 -9.031167e-06
## EEM  1.042109e-04 0.0017547132 0.0010390177  6.437744e-04  6.795448e-04
## EFA  4.178350e-05 0.0010390177 0.0010642379  6.490300e-04  6.975424e-04
## IJS -7.811962e-05 0.0006437744 0.0006490300  1.565449e-03  8.290236e-04
## SPY -9.031167e-06 0.0006795448 0.0006975424  8.290236e-04  7.408303e-04
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
w <- c(0.25, 0.25, 0.2, 0.2, 0.1)

sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
sd_portfolio
##            [,1]
## [1,] 0.02347492
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
##               AGG         EEM         EFA         IJS         SPY
## [1,] 0.0003874191 0.009257153 0.005815636 0.005684465 0.002330251
rowSums(component_contribution)
## [1] 0.02347492
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
    round(3) %>%
    as_tibble()

component_percentages
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
component_percentages %>%

    as_tibble() %>%
    gather(key = "asset", value = "contribution")
## # A tibble: 5 × 2
##   asset contribution
##   <chr>        <dbl>
## 1 AGG          0.017
## 2 EEM          0.394
## 3 EFA          0.248
## 4 IJS          0.242
## 5 SPY          0.099

4 Component Contribution with a Custom Function

asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

calculate_component_contribution <- function(asset_returns_wide_tbl, w) {

    covariance_matrix <- cov(asset_returns_wide_tbl)
    
    sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)

    component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]

    component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
        round(3) %>%
        as_tibble()
    
    return(component_percentages)

}

asset_returns_wide_tbl %>% calculate_component_contribution(w = c(0.25,0.25,0.2,0.2,0.1))
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099

5 Visualizing Component Contribution

asset_returns_wide_tbl %>%

    calculate_component_contribution(w = c(0.25,0.25,0.2,0.2,0.1)) %>%
    gather(key = "asset", value = "contribution") %>%

    ggplot(aes(asset, contribution)) +
    geom_col(fill = "cornflowerblue") +
    
    theme(plot.title = element_text(hjust = 0.5)) +
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
    
    labs(title = "Percent Contribution to Portfolio Standard Deviation",
         y = "Percent Contribution to Risk",
         x = NULL)

asset_returns_wide_tbl %>%

    calculate_component_contribution(w = c(0.25,0.25,0.2,0.2,0.1)) %>%
    gather(key = "asset", value = "contribution") %>%
    add_column(weights = c(0.25,0.25,0.2,0.2,0.1)) %>%
    pivot_longer(cols = c(contribution, weights), names_to = "type", values_to = "value") %>%

    ggplot(aes(asset, value, fill = type)) +
    geom_col(position = "dodge") +
    
    theme(plot.title = element_text(hjust = 0.5)) +
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
    theme_tq() +
    scale_fill_tq() +

    labs(title = "Percent Contribution to Volatility",
         y = "percent",
         x = "asset") 

6 Rolling Component Contribution