library(tidymodels)
## ── Attaching packages ────────────────────────────────────── tidymodels 1.2.0 ──
## ✔ broom        1.0.7      ✔ recipes      1.0.10
## ✔ dials        1.3.0      ✔ rsample      1.2.1 
## ✔ dplyr        1.1.4      ✔ tibble       3.2.1 
## ✔ ggplot2      3.5.1      ✔ tidyr        1.3.1 
## ✔ infer        1.0.7      ✔ tune         1.2.1 
## ✔ modeldata    1.4.0      ✔ workflows    1.1.4 
## ✔ parsnip      1.2.1      ✔ workflowsets 1.1.0 
## ✔ purrr        1.0.2      ✔ yardstick    1.3.1
## ── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ──
## ✖ purrr::discard() masks scales::discard()
## ✖ dplyr::filter()  masks stats::filter()
## ✖ dplyr::lag()     masks stats::lag()
## ✖ recipes::step()  masks stats::step()
## • Learn how to get started at https://www.tidymodels.org/start/
attrition_raw_tbl <- readr::read_csv("../00_data/WA_Fn-UseC_-HR-Employee-Attrition.csv")
## Rows: 1470 Columns: 35
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (9): Attrition, BusinessTravel, Department, EducationField, Gender, Job...
## dbl (26): Age, DailyRate, DistanceFromHome, Education, EmployeeCount, Employ...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
attrition_raw_tbl %>% glimpse()
## Rows: 1,470
## Columns: 35
## $ Age                      <dbl> 41, 49, 37, 33, 27, 32, 59, 30, 38, 36, 35, 2…
## $ Attrition                <chr> "Yes", "No", "Yes", "No", "No", "No", "No", "…
## $ BusinessTravel           <chr> "Travel_Rarely", "Travel_Frequently", "Travel…
## $ DailyRate                <dbl> 1102, 279, 1373, 1392, 591, 1005, 1324, 1358,…
## $ Department               <chr> "Sales", "Research & Development", "Research …
## $ DistanceFromHome         <dbl> 1, 8, 2, 3, 2, 2, 3, 24, 23, 27, 16, 15, 26, …
## $ Education                <dbl> 2, 1, 2, 4, 1, 2, 3, 1, 3, 3, 3, 2, 1, 2, 3, …
## $ EducationField           <chr> "Life Sciences", "Life Sciences", "Other", "L…
## $ EmployeeCount            <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ EmployeeNumber           <dbl> 1, 2, 4, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16,…
## $ EnvironmentSatisfaction  <dbl> 2, 3, 4, 4, 1, 4, 3, 4, 4, 3, 1, 4, 1, 2, 3, …
## $ Gender                   <chr> "Female", "Male", "Male", "Female", "Male", "…
## $ HourlyRate               <dbl> 94, 61, 92, 56, 40, 79, 81, 67, 44, 94, 84, 4…
## $ JobInvolvement           <dbl> 3, 2, 2, 3, 3, 3, 4, 3, 2, 3, 4, 2, 3, 3, 2, …
## $ JobLevel                 <dbl> 2, 2, 1, 1, 1, 1, 1, 1, 3, 2, 1, 2, 1, 1, 1, …
## $ JobRole                  <chr> "Sales Executive", "Research Scientist", "Lab…
## $ JobSatisfaction          <dbl> 4, 2, 3, 3, 2, 4, 1, 3, 3, 3, 2, 3, 3, 4, 3, …
## $ MaritalStatus            <chr> "Single", "Married", "Single", "Married", "Ma…
## $ MonthlyIncome            <dbl> 5993, 5130, 2090, 2909, 3468, 3068, 2670, 269…
## $ MonthlyRate              <dbl> 19479, 24907, 2396, 23159, 16632, 11864, 9964…
## $ NumCompaniesWorked       <dbl> 8, 1, 6, 1, 9, 0, 4, 1, 0, 6, 0, 0, 1, 0, 5, …
## $ Over18                   <chr> "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", …
## $ OverTime                 <chr> "Yes", "No", "Yes", "Yes", "No", "No", "Yes",…
## $ PercentSalaryHike        <dbl> 11, 23, 15, 11, 12, 13, 20, 22, 21, 13, 13, 1…
## $ PerformanceRating        <dbl> 3, 4, 3, 3, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 3, …
## $ RelationshipSatisfaction <dbl> 1, 4, 2, 3, 4, 3, 1, 2, 2, 2, 3, 4, 4, 3, 2, …
## $ StandardHours            <dbl> 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 8…
## $ StockOptionLevel         <dbl> 0, 1, 0, 0, 1, 0, 3, 1, 0, 2, 1, 0, 1, 1, 0, …
## $ TotalWorkingYears        <dbl> 8, 10, 7, 8, 6, 8, 12, 1, 10, 17, 6, 10, 5, 3…
## $ TrainingTimesLastYear    <dbl> 0, 3, 3, 3, 3, 2, 3, 2, 2, 3, 5, 3, 1, 2, 4, …
## $ WorkLifeBalance          <dbl> 1, 3, 3, 3, 3, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, …
## $ YearsAtCompany           <dbl> 6, 10, 0, 8, 2, 7, 1, 1, 9, 7, 5, 9, 5, 2, 4,…
## $ YearsInCurrentRole       <dbl> 4, 7, 0, 7, 2, 7, 0, 0, 7, 7, 4, 5, 2, 2, 2, …
## $ YearsSinceLastPromotion  <dbl> 0, 1, 0, 3, 2, 3, 0, 0, 1, 7, 0, 0, 4, 1, 0, …
## $ YearsWithCurrManager     <dbl> 5, 7, 0, 0, 2, 6, 0, 0, 8, 7, 3, 8, 3, 2, 3, …

Prompt 1:

I have a dataset called attrition_raw_tbl that looks like this:

attrition_raw_tbl %>% glimpse() Rows: 1,470 Columns: 35 $ Age 41, 49, 37, 33, 27, 32, 59, 30, 38, 3… $ Attrition “Yes”, “No”, “Yes”, “No”, “No”, “No”,… $ BusinessTravel “Travel_Rarely”, “Travel_Frequently”,… $ DailyRate 1102, 279, 1373, 1392, 591, 1005, 132… $ Department “Sales”, “Research & Development”, “R… $ DistanceFromHome 1, 8, 2, 3, 2, 2, 3, 24, 23, 27, 16, … $ Education 2, 1, 2, 4, 1, 2, 3, 1, 3, 3, 3, 2, 1… $ EducationField ”Life Sciences”, “Life Sciences”, “Ot… $ EmployeeCount 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1… $ EmployeeNumber 1, 2, 4, 5, 7, 8, 10, 11, 12, 13, 14,… $ EnvironmentSatisfaction 2, 3, 4, 4, 1, 4, 3, 4, 4, 3, 1, 4, 1… $ Gender ”Female”, “Male”, “Male”, “Female”, “… $ HourlyRate 94, 61, 92, 56, 40, 79, 81, 67, 44, 9… $ JobInvolvement 3, 2, 2, 3, 3, 3, 4, 3, 2, 3, 4, 2, 3… $ JobLevel 2, 2, 1, 1, 1, 1, 1, 1, 3, 2, 1, 2, 1… $ JobRole ”Sales Executive”, “Research Scientis… $ JobSatisfaction 4, 2, 3, 3, 2, 4, 1, 3, 3, 3, 2, 3, 3… $ MaritalStatus ”Single”, “Married”, “Single”, “Marri… $ MonthlyIncome 5993, 5130, 2090, 2909, 3468, 3068, 2… $ MonthlyRate 19479, 24907, 2396, 23159, 16632, 118… $ NumCompaniesWorked 8, 1, 6, 1, 9, 0, 4, 1, 0, 6, 0, 0, 1… $ Over18 ”Y”, “Y”, “Y”, “Y”, “Y”, “Y”, “Y”, “Y… $ OverTime ”Yes”, “No”, “Yes”, “Yes”, “No”, “No”… $ PercentSalaryHike 11, 23, 15, 11, 12, 13, 20, 22, 21, 1… $ PerformanceRating 3, 4, 3, 3, 3, 3, 4, 4, 4, 3, 3, 3, 3… $ RelationshipSatisfaction 1, 4, 2, 3, 4, 3, 1, 2, 2, 2, 3, 4, 4… $ StandardHours 80, 80, 80, 80, 80, 80, 80, 80, 80, 8… $ StockOptionLevel 0, 1, 0, 0, 1, 0, 3, 1, 0, 2, 1, 0, 1… $ TotalWorkingYears 8, 10, 7, 8, 6, 8, 12, 1, 10, 17, 6, … $ TrainingTimesLastYear 0, 3, 3, 3, 3, 2, 3, 2, 2, 3, 5, 3, 1… $ WorkLifeBalance 1, 3, 3, 3, 3, 2, 2, 3, 3, 2, 3, 3, 2… $ YearsAtCompany 6, 10, 0, 8, 2, 7, 1, 1, 9, 7, 5, 9, … $ YearsInCurrentRole 4, 7, 0, 7, 2, 7, 0, 0, 7, 7, 4, 5, 2… $ YearsSinceLastPromotion 0, 1, 0, 3, 2, 3, 0, 0, 1, 7, 0, 0, 4… $ YearsWithCurrManager 5, 7, 0, 0, 2, 6, 0, 0, 8, 7, 3, 8, 3…

The goal is to help predict attrition for employees.

Please write R code to create a predictive model that predicts the probability of attrition.

Prompt 2:

Please update the code to use tidymodels instead of caret and to use the h2o model instead of glmnet.

Prompt 3:

Error in conf_mat(): ! Can’t select columns that don’t exist.

# Load necessary libraries
library(tidymodels)
library(h2o)
## 
## ----------------------------------------------------------------------
## 
## Your next step is to start H2O:
##     > h2o.init()
## 
## For H2O package documentation, ask for help:
##     > ??h2o
## 
## After starting H2O, you can use the Web UI at http://localhost:54321
## For more information visit https://docs.h2o.ai
## 
## ----------------------------------------------------------------------
## 
## Attaching package: 'h2o'
## The following objects are masked from 'package:stats':
## 
##     cor, sd, var
## The following objects are masked from 'package:base':
## 
##     %*%, %in%, &&, ||, apply, as.factor, as.numeric, colnames,
##     colnames<-, ifelse, is.character, is.factor, is.numeric, log,
##     log10, log1p, log2, round, signif, trunc
# Initialize h2o
h2o.init()
## 
## H2O is not running yet, starting it now...
## 
## Note:  In case of errors look at the following log files:
##     C:\Users\bella\AppData\Local\Temp\Rtmpo9XEmH\fileb0832fe5edc/h2o_bella_started_from_r.out
##     C:\Users\bella\AppData\Local\Temp\Rtmpo9XEmH\fileb086ffe5452/h2o_bella_started_from_r.err
## 
## 
## Starting H2O JVM and connecting:  Connection successful!
## 
## R is connected to the H2O cluster: 
##     H2O cluster uptime:         4 seconds 243 milliseconds 
##     H2O cluster timezone:       America/New_York 
##     H2O data parsing timezone:  UTC 
##     H2O cluster version:        3.44.0.3 
##     H2O cluster version age:    11 months and 12 days 
##     H2O cluster name:           H2O_started_from_R_bella_jjl252 
##     H2O cluster total nodes:    1 
##     H2O cluster total memory:   1.93 GB 
##     H2O cluster total cores:    8 
##     H2O cluster allowed cores:  8 
##     H2O cluster healthy:        TRUE 
##     H2O Connection ip:          localhost 
##     H2O Connection port:        54321 
##     H2O Connection proxy:       NA 
##     H2O Internal Security:      FALSE 
##     R Version:                  R version 4.3.3 (2024-02-29 ucrt)
## Warning in h2o.clusterInfo(): 
## Your H2O cluster version is (11 months and 12 days) old. There may be a newer version available.
## Please download and install the latest version from: https://h2o-release.s3.amazonaws.com/h2o/latest_stable.html
# Prepare the data (converting 'Attrition' to a binary factor)
attrition_raw_tbl <- attrition_raw_tbl %>%
  mutate(Attrition = factor(Attrition, levels = c("No", "Yes")))

# Split the data into training and testing sets (80-20 split)
set.seed(123)  # Set seed for reproducibility
train_split <- initial_split(attrition_raw_tbl, prop = 0.8)
train_data <- training(train_split)
test_data <- testing(train_split)

# Convert the data frames to h2o objects
train_data_h2o <- as.h2o(train_data)
##   |                                                                              |                                                                      |   0%  |                                                                              |======================================================================| 100%
test_data_h2o <- as.h2o(test_data)
##   |                                                                              |                                                                      |   0%  |                                                                              |======================================================================| 100%
# Define the model (logistic regression in h2o)
model <- h2o.glm(
  x = setdiff(names(train_data), "Attrition"),  # Independent variables
  y = "Attrition",  # Dependent variable
  training_frame = train_data_h2o,
  family = "binomial",  # Binary classification
  lambda = 0.1,  # Regularization parameter (can adjust as needed)
  alpha = 0.5,  # Elastic net mixing parameter
  seed = 123
)
## Warning in .h2o.processResponseWarnings(res): Dropping bad and constant columns: [JobRole, MaritalStatus, StandardHours, BusinessTravel, Department, OverTime, Over18, EmployeeCount, Gender, EducationField].
##   |                                                                              |                                                                      |   0%  |                                                                              |======================================================================| 100%
# Summary of the model
summary(model)
## Model Details:
## ==============
## 
## H2OBinomialModel: glm
## Model Key:  GLM_model_R_1733239338389_1 
## GLM Model: summary
##     family  link                           regularization
## 1 binomial logit Elastic Net (alpha = 0.5, lambda = 0.1 )
##   number_of_predictors_total number_of_active_predictors number_of_iterations
## 1                         24                           4                    3
##          training_frame
## 1 train_data_sid_a39b_1
## 
## H2OBinomialMetrics: glm
## ** Reported on training data. **
## 
## MSE:  0.1321766
## RMSE:  0.3635611
## LogLoss:  0.4310792
## Mean Per-Class Error:  0.3608015
## AUC:  0.6882274
## AUCPR:  0.3420089
## Gini:  0.3764548
## R^2:  0.02008047
## Residual Deviance:  1013.898
## AIC:  1023.898
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##         No Yes    Error       Rate
## No     844 143 0.144883   =143/987
## Yes    109  80 0.576720   =109/189
## Totals 953 223 0.214286  =252/1176
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold      value idx
## 1                       max f1  0.176756   0.388350  75
## 2                       max f2  0.157042   0.518293 216
## 3                 max f0point5  0.182666   0.388979  41
## 4                 max accuracy  0.194282   0.848639   6
## 5                max precision  0.194282   0.739130   6
## 6                   max recall  0.109672   1.000000 399
## 7              max specificity  0.198807   0.995947   0
## 8             max absolute_mcc  0.176756   0.260829  75
## 9   max min_per_class_accuracy  0.167102   0.629630 142
## 10 max mean_per_class_accuracy  0.168036   0.650231 134
## 11                     max tns  0.198807 983.000000   0
## 12                     max fns  0.198807 185.000000   0
## 13                     max fps  0.113326 987.000000 398
## 14                     max tps  0.109672 189.000000 399
## 15                     max tnr  0.198807   0.995947   0
## 16                     max fnr  0.198807   0.978836   0
## 17                     max fpr  0.113326   1.000000 398
## 18                     max tpr  0.109672   1.000000 399
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
## 
## 
## 
## Scoring History: 
##             timestamp   duration iterations negative_log_likelihood objective
## 1 2024-12-03 10:22:31  0.000 sec          0               518.44246   0.44085
## 2 2024-12-03 10:22:31  0.031 sec          1               518.44246   0.44085
## 3 2024-12-03 10:22:31  0.051 sec          2               507.12030   0.43951
## 4 2024-12-03 10:22:31  0.057 sec          3               506.94915   0.43950
##   training_rmse training_logloss training_r2 training_auc training_pr_auc
## 1            NA               NA          NA           NA              NA
## 2            NA               NA          NA           NA              NA
## 3            NA               NA          NA           NA              NA
## 4       0.36356          0.43108     0.02008      0.68823         0.34201
##   training_lift training_classification_error
## 1            NA                            NA
## 2            NA                            NA
## 3            NA                            NA
## 4       4.30769                       0.21429
## 
## Variable Importances: (Extract with `h2o.varimp`) 
## =================================================
## 
## Variable Importances: 
##             variable relative_importance scaled_importance percentage
## 1                Age            0.078885          1.000000   0.480741
## 2 YearsInCurrentRole            0.039522          0.501008   0.240855
## 3  TotalWorkingYears            0.023700          0.300443   0.144435
## 4           JobLevel            0.021983          0.278672   0.133969
## 5          DailyRate            0.000000          0.000000   0.000000
## 
## ---
##                   variable relative_importance scaled_importance percentage
## 19        StockOptionLevel            0.000000          0.000000   0.000000
## 20   TrainingTimesLastYear            0.000000          0.000000   0.000000
## 21         WorkLifeBalance            0.000000          0.000000   0.000000
## 22          YearsAtCompany            0.000000          0.000000   0.000000
## 23 YearsSinceLastPromotion            0.000000          0.000000   0.000000
## 24    YearsWithCurrManager            0.000000          0.000000   0.000000
# Make predictions on the test data
predictions <- h2o.predict(model, test_data_h2o)
##   |                                                                              |                                                                      |   0%  |                                                                              |======================================================================| 100%
# Extract probabilities from the predictions
probabilities <- as.data.frame(predictions)[, 3]

# Convert probabilities to class predictions (threshold 0.5)
predicted_classes <- ifelse(probabilities > 0.5, "Yes", "No")

# Confusion matrix for evaluation using tidymodels
conf_matrix <- test_data %>%
  mutate(predicted = factor(predicted_classes, levels = c("No", "Yes"))) %>%
  conf_mat(truth = Attrition, estimate = predicted)

# Print confusion matrix
print(conf_matrix)
##           Truth
## Prediction  No Yes
##        No  246  48
##        Yes   0   0
# ROC Curve for model performance using pROC
library(pROC)
## Type 'citation("pROC")' for a citation.
## 
## Attaching package: 'pROC'
## The following object is masked from 'package:h2o':
## 
##     var
## The following objects are masked from 'package:stats':
## 
##     cov, smooth, var
roc_curve <- roc(test_data$Attrition, probabilities)
## Setting levels: control = No, case = Yes
## Setting direction: controls < cases
plot(roc_curve, main = "ROC Curve", col = "blue")

# Shutdown h2o cluster
h2o.shutdown(prompt = FALSE)