df <- read.csv("Data/Sample - Superstore.csv")
head(df)
##   Row.ID       Order.ID Order.Date  Ship.Date      Ship.Mode Customer.ID
## 1      1 CA-2016-152156  11/8/2016 11/11/2016   Second Class    CG-12520
## 2      2 CA-2016-152156  11/8/2016 11/11/2016   Second Class    CG-12520
## 3      3 CA-2016-138688  6/12/2016  6/16/2016   Second Class    DV-13045
## 4      4 US-2015-108966 10/11/2015 10/18/2015 Standard Class    SO-20335
## 5      5 US-2015-108966 10/11/2015 10/18/2015 Standard Class    SO-20335
## 6      6 CA-2014-115812   6/9/2014  6/14/2014 Standard Class    BH-11710
##     Customer.Name   Segment       Country            City      State
## 1     Claire Gute  Consumer United States       Henderson   Kentucky
## 2     Claire Gute  Consumer United States       Henderson   Kentucky
## 3 Darrin Van Huff Corporate United States     Los Angeles California
## 4  Sean O'Donnell  Consumer United States Fort Lauderdale    Florida
## 5  Sean O'Donnell  Consumer United States Fort Lauderdale    Florida
## 6 Brosina Hoffman  Consumer United States     Los Angeles California
##   Postal.Code Region      Product.ID        Category Sub.Category
## 1       42420  South FUR-BO-10001798       Furniture    Bookcases
## 2       42420  South FUR-CH-10000454       Furniture       Chairs
## 3       90036   West OFF-LA-10000240 Office Supplies       Labels
## 4       33311  South FUR-TA-10000577       Furniture       Tables
## 5       33311  South OFF-ST-10000760 Office Supplies      Storage
## 6       90032   West FUR-FU-10001487       Furniture  Furnishings
##                                                       Product.Name    Sales
## 1                                Bush Somerset Collection Bookcase 261.9600
## 2      Hon Deluxe Fabric Upholstered Stacking Chairs, Rounded Back 731.9400
## 3        Self-Adhesive Address Labels for Typewriters by Universal  14.6200
## 4                    Bretford CR4500 Series Slim Rectangular Table 957.5775
## 5                                   Eldon Fold 'N Roll Cart System  22.3680
## 6 Eldon Expressions Wood and Plastic Desk Accessories, Cherry Wood  48.8600
##   Quantity Discount    Profit
## 1        2     0.00   41.9136
## 2        3     0.00  219.5820
## 3        2     0.00    6.8714
## 4        5     0.45 -383.0310
## 5        2     0.20    2.5164
## 6        7     0.00   14.1694

3 Contruccion de variables

# Nota la prediccion que vamos a hacer considera valores corrientes 
df_mod <- df %>% #Llama la base de datos 
  filter(State == "New York") %>%
  select(Order.Date, Sales) %>% # Selecciona dos columnas Order.Date y Sales 
  mutate(Order.Date = mdy(Order.Date)) %>% # Cambia formato a fecha 
  mutate(Fecha = floor_date(Order.Date, unit = "month")) %>% #Asigna las fechas a primero de mes 
  group_by(Fecha) %>% 
  summarise(Ventas = sum(Sales)) %>%
  mutate(Mes = seq_along(Fecha)) #crear variable x para facilitar la regresión
head(df_mod)
## # A tibble: 6 × 3
##   Fecha       Ventas   Mes
##   <date>       <dbl> <int>
## 1 2014-01-01    3.93     1
## 2 2014-02-01   65.0      2
## 3 2014-03-01 4936.       3
## 4 2014-04-01  491.       4
## 5 2014-05-01 1169.       5
## 6 2014-06-01 5743.       6

#4 visualización del objetivo

df_mod %>%
  ggplot(., aes(x=Mes, y=Ventas)) +
  geom_point()+
  geom_line() +
  geom_smooth(method = "lm", formula = "y ~ x")

#5 Gráficas de caja y vigotes

#Esta grafica me sirve para detectar valores atipicos
df_mod %>%
  ggplot(., aes(x=Ventas)) +
  geom_boxplot()

#6 Analisis de normalidad

# Revisar que la variable y tenga una distribución más o menos normal
df_mod %>%
  ggplot(., aes(x = Ventas)) +
  geom_histogram(bins = 30, aes(y=..density..)) +
  geom_density()
## Warning: The dot-dot notation (`..density..`) was deprecated in ggplot2 3.4.0.
## ℹ Please use `after_stat(density)` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

#7 Análisis de correlación

#3 calculamos el coeficiente de correlacion de pearson
with(df_mod, cor.test(Mes, Ventas))
## 
##  Pearson's product-moment correlation
## 
## data:  Mes and Ventas
## t = 1.9685, df = 46, p-value = 0.05505
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.005857389  0.521567723
## sample estimates:
##       cor 
## 0.2787412
#Está correlación va de -1 a 1
#Valores extremos indican correlación más fuerte
# Puede ser pocitiva (suben o bajan juntas) o 
# negativa (si una suba la otra baja y viceversa)
library(stargazer)
## 
## Please cite as:
##  Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.
##  R package version 5.2.3. https://CRAN.R-project.org/package=stargazer

#8 Modelo de regresión

modelo_lineal <- lm(Ventas ~ Mes, data = df_mod)
stargazer(modelo_lineal, type = "text")
## 
## ===============================================
##                         Dependent variable:    
##                     ---------------------------
##                               Ventas           
## -----------------------------------------------
## Mes                          123.003*          
##                              (62.485)          
##                                                
## Constant                    3,463.011*         
##                             (1,758.658)        
##                                                
## -----------------------------------------------
## Observations                    48             
## R2                             0.078           
## Adjusted R2                    0.058           
## Residual Std. Error     5,997.222 (df = 46)    
## F Statistic             3.875* (df = 1; 46)    
## ===============================================
## Note:               *p<0.1; **p<0.05; ***p<0.01
# El modelo que buscamos estimar es: y = a + bx
# En este caso 
# Constant = a
# Pendiente = b
# Mes = x

9 Coeficientes del modelo

# Obtener los coeficientes del modelo, es decir a y b
coeficientes <- coef(modelo_lineal)
intercepto <- coeficientes["(Intercept)"]
pendiente <- coeficientes["Mes"]

#Crear el texto de la ecuación
ecuacion <- paste0("y = ",
                   round(intercepto, 2),
                   " + ",
                   round(pendiente, 2),
                   "x")
ecuacion
## [1] "y = 3463.01 + 123x"

10 Generacion de predicciones

# Vamos a extraer la serie temporal 6 meses
df_futuro <- data.frame(Fecha = seq.Date(from = max(df_mod$Fecha) + months(1),
                            by = "month",
                            length.out = 6),
           Mes = seq(from = 49, to = 54, by = 1))

#Generar las predicciones para 6 meses con intervalos de confianza
predicciones <- predict(modelo_lineal,
                        newdata = df_futuro,
                        interval = "confidence")
predicciones
##         fit      lwr      upr
## 1  9490.167 5950.172 13030.16
## 2  9613.170 5963.166 13263.18
## 3  9736.174 5975.171 13497.18
## 4  9859.177 5986.273 13732.08
## 5  9982.180 5996.547 13967.81
## 6 10105.183 6006.062 14204.30

#11 Juntar datos

# Convertir a data frame
df_predicciones <- as.data.frame(predicciones)
colnames(df_predicciones) <- c("Ventas", "Bajo", "Alto")

#Unir las predicciones con las fechas 
df_futuro <- cbind(df_futuro, df_predicciones) #cbind unir por columnas

#Unir con la base de datos original
df_total <- bind_rows(df_mod, df_futuro)
tail(df_total, 7)
## # A tibble: 7 × 5
##   Fecha      Ventas   Mes  Bajo   Alto
##   <date>      <dbl> <dbl> <dbl>  <dbl>
## 1 2017-12-01  6705.    48   NA     NA 
## 2 2018-01-01  9490.    49 5950. 13030.
## 3 2018-02-01  9613.    50 5963. 13263.
## 4 2018-03-01  9736.    51 5975. 13497.
## 5 2018-04-01  9859.    52 5986. 13732.
## 6 2018-05-01  9982.    53 5997. 13968.
## 7 2018-06-01 10105.    54 6006. 14204.
df_total %>%
  ggplot(., aes(x = Fecha, y = Ventas)) +
  geom_point(data = df_mod) + #Valores historicos
  geom_line(data = df_mod) + #Linea de valores historicos
  geom_smooth(method = "lm", formula = "y ~ x", color = "blue", data = df_mod) +
  geom_ribbon(data = df_futuro, aes(ymin = Bajo, ymax = Alto),
              fill = "lightblue") +
  geom_point(data = df_futuro, aes(y = Ventas), color = "red") + #Valores predichos
  geom_line(data = df_futuro, aes(y = Ventas), color = "red", linetype = "dashed") +
  labs(title = "Predicción de ventas enero-junio 2018",
       x = "Mes",
       y = "Ventas")