# Load packages

# Core
library(tidyverse)
library(tidyquant)

# time series
library(timetk)

Goal

Simulate future portfolio returns

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”

market: “SPY”

from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AGG        0.25
## 2 EEM        0.25
## 3 EFA        0.2 
## 4 IJS        0.2 
## 5 SPY        0.1

4 Build a portfolio

# ?tq_portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 60 × 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31  0.0204 
##  2 2013-02-28 -0.00239
##  3 2013-03-28  0.0121 
##  4 2013-04-30  0.0174 
##  5 2013-05-31 -0.0128 
##  6 2013-06-28 -0.0247 
##  7 2013-07-31  0.0321 
##  8 2013-08-30 -0.0224 
##  9 2013-09-30  0.0511 
## 10 2013-10-31  0.0301 
## # ℹ 50 more rows

5 Simulating growth of a dollar

# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899134
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.02347492
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
##   [1]  9.732627e-03  1.949517e-02  4.770101e-03  1.542031e-03  3.971969e-03
##   [6] -6.784557e-04 -9.315755e-03  3.069273e-03 -9.233337e-03  5.996148e-04
##  [11] -7.444696e-03  1.084356e-02  2.675974e-02  9.400882e-03 -1.757291e-02
##  [16]  1.602427e-02  3.006643e-02 -6.675293e-03 -2.753717e-02 -1.106436e-03
##  [21]  2.292201e-02  7.341977e-03 -1.761424e-02 -1.832924e-02  4.786687e-03
##  [26] -3.137995e-02  2.776340e-03  5.126525e-03  1.057583e-02  8.524009e-03
##  [31]  1.552838e-02  2.789353e-05  2.537530e-02 -3.609716e-02  1.975668e-02
##  [36]  3.815478e-02  1.019257e-02  1.843028e-02  2.256028e-02 -1.988669e-02
##  [41] -6.309173e-03 -9.668299e-03 -2.393120e-02  2.365401e-02 -7.406336e-03
##  [46]  2.479126e-02 -1.709766e-02  3.498953e-02  3.785163e-02  2.578918e-03
##  [51] -2.206581e-02  2.107472e-02  2.395062e-02 -5.123318e-03  1.225189e-02
##  [56] -1.138134e-02 -9.216749e-03 -8.572055e-03  1.474636e-02 -2.950683e-02
##  [61]  2.553296e-02  1.032367e-02 -1.039099e-02  2.558364e-02 -6.251581e-03
##  [66] -3.784426e-03  7.233067e-03  9.396172e-04  3.179533e-02  1.615395e-02
##  [71]  3.780395e-02  5.459258e-03 -7.696742e-03  1.146076e-02 -6.011421e-03
##  [76] -6.513380e-03  2.084349e-04 -1.540996e-04 -2.138738e-03  6.678325e-02
##  [81]  2.969732e-03 -5.120168e-02  1.083522e-02 -5.237528e-02 -1.017762e-02
##  [86]  8.349316e-03  2.513346e-02 -6.755628e-03 -5.332223e-03 -1.128762e-02
##  [91]  3.908798e-02  3.708287e-02  2.289638e-02 -2.781825e-03  4.351217e-03
##  [96]  4.579754e-02 -2.348807e-03  1.650387e-02  2.754359e-02  3.529799e-02
## [101] -1.542444e-03 -3.508101e-02  4.133593e-03 -9.198174e-04  4.392539e-02
## [106]  3.583086e-03  1.187009e-03  4.668066e-02 -2.625263e-02  1.577011e-02
## [111] -9.145624e-03  3.865353e-03 -3.803831e-03  2.099808e-02  1.801609e-02
## [116]  8.616470e-03  5.640790e-02  6.930972e-03  5.623174e-03  1.130331e-02
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 × 1
##    returns
##      <dbl>
##  1   1    
##  2   1.01 
##  3   1.02 
##  4   1.00 
##  5   1.00 
##  6   1.00 
##  7   0.999
##  8   0.991
##  9   1.00 
## 10   0.991
## # ℹ 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
    mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
    select(growth)

simulated_growth
## # A tibble: 121 × 1
##    growth
##     <dbl>
##  1   1   
##  2   1.01
##  3   1.03
##  4   1.03
##  5   1.04
##  6   1.04
##  7   1.04
##  8   1.03
##  9   1.03
## 10   1.02
## # ℹ 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 6.872848

6 Simulation function

    simulate_accumulation <- function(initial_value, N, mean_return, sd_return) {
        
    # Add a dollar
    simulated_returns_add_1 <- tibble(returns = c(initial_value, 1 + rnorm(N, mean_return, sd_return)))
    
    # Calculate the cumulative growth of a dollar
    simulated_growth <- simulated_returns_add_1 %>%
        mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
        select(growth)
    
    (simulated_growth)
    
    }

simulate_accumulation(initial_value = 100, N = 240, mean_return = 0.005, sd_return = 0.01) %>%
    tail()
## # A tibble: 6 × 1
##   growth
##    <dbl>
## 1   323.
## 2   318.
## 3   315.
## 4   318.
## 5   315.
## 6   314.
dump(list = c("simulate_accumulation"), 
     file = "../00_scripts/simulate_accumulation.R")

7 Running multiple simulations

# Create a vector of its as a starting point
sims <- 51
starts <- rep(1, sims) %>%
    set_names(paste0("sims", 1:sims))

starts
##  sims1  sims2  sims3  sims4  sims5  sims6  sims7  sims8  sims9 sims10 sims11 
##      1      1      1      1      1      1      1      1      1      1      1 
## sims12 sims13 sims14 sims15 sims16 sims17 sims18 sims19 sims20 sims21 sims22 
##      1      1      1      1      1      1      1      1      1      1      1 
## sims23 sims24 sims25 sims26 sims27 sims28 sims29 sims30 sims31 sims32 sims33 
##      1      1      1      1      1      1      1      1      1      1      1 
## sims34 sims35 sims36 sims37 sims38 sims39 sims40 sims41 sims42 sims43 sims44 
##      1      1      1      1      1      1      1      1      1      1      1 
## sims45 sims46 sims47 sims48 sims49 sims50 sims51 
##      1      1      1      1      1      1      1
# Simulate
# for reproducable research
set.seed(1234)

monte_carlo_sims_51 <- starts %>%
    
    # Simulate
    map_dfc(.x = .,
            .f = ~simulate_accumulation(initial_value = .x,
                                        N             = 120,
                                        mean_return   = mean_port_return, 
                                        sd_return     = stddev_port_return)) %>%
    
    # Add column month
    mutate(month = 1:nrow(.)) %>%
    select(month, everything()) %>%
    
    # Rearrand column names
    set_names(c("month", names(starts))) %>%
    
    # Transform to long form
    pivot_longer(cols = -month, names_to = "sim", values_to = "growth")

monte_carlo_sims_51
## # A tibble: 6,171 × 3
##    month sim    growth
##    <int> <chr>   <dbl>
##  1     1 sims1       1
##  2     1 sims2       1
##  3     1 sims3       1
##  4     1 sims4       1
##  5     1 sims5       1
##  6     1 sims6       1
##  7     1 sims7       1
##  8     1 sims8       1
##  9     1 sims9       1
## 10     1 sims10      1
## # ℹ 6,161 more rows
# Find quantiles
monte_carlo_sims_51 %>%
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    pull(growth) %>%
    
    quantile(probs = c(0, 0.25, 0.5, 0.75, 1)) %>%
    round(2)
##   0%  25%  50%  75% 100% 
## 1.17 1.59 1.98 2.40 3.88

8 Visualizing simulations with ggplot

monte_carlo_sims_51 %>%
    
    ggplot(aes(x = month, y = growth, color = sim)) +
    geom_line() +
    theme(legend.position = "none") +
    theme(plot.title = element_text(hjust = 0.5)) +
    
    labs(title = "Simulating growth of $1 over 120 months")

Line plot with max, median, and min

# Step 1 Summarize data into max, median, and min of last value

sim_summary <- monte_carlo_sims_51 %>%
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    
    summarise(max    = max(growth),
              median = median(growth),
              min    = min(growth))
    
sim_summary
## # A tibble: 1 × 3
##     max median   min
##   <dbl>  <dbl> <dbl>
## 1  3.88   1.98  1.17
# Step 2 Plot
monte_carlo_sims_51 %>%
    
    # Fitler for max, median, and min sim
    group_by(sim) %>%
    filter(last(growth) == sim_summary$max | 
               last(growth) == sim_summary$median |
               last(growth) == sim_summary$min) %>%
    
    ungroup() %>%
    
    # Plot
    ggplot(aes(x = month, y = growth, color = sim)) +
    geom_line() +
    theme(legend.position = "none") +
    theme(plot.title = element_text(hjust = 0.5)) +
    theme(plot.subtitle = element_text(hjust = 0.5)) +
    
    labs(title = "Simulating growth of $1 over 120 months",
         subtitle = "Maximum, Median, and Minimum Simulation")